Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 95, nr 4 | 309--316
Tytuł artykułu

Method of determination of thermo-flow parameters for steam boiler

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method for determining thermo-flow parameters for steam boilers. This method allows one to perform the calculations of the boiler furnace chamber and heat flow rates absorbed by superheater stages. These parameters are important for monitoring the performance of the power unit. Knowledge of these parameters makes it possible to determine the degree of furnace chamber slagging. The calculation can be performed in online mode and used in the monitoring of the steam boiler. The presented method allows the steam boiler to be run at high efficiency.
Wydawca

Rocznik
Strony
309--316
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland, taler@mech.pk.edu.pl
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Environmental Engineering, Institute of Thermal Engineering and Air Protection, Warszawska 24, 31-155 Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
  • Cracow University of Technology, Faculty of Mechanical Engineering, Institute of Thermal Power Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
autor
  • EDF Polska S. A., Research and Development, Ciepłownicza 1, 31-587 Cracow, Poland
autor
  • EDF Polska S. A., Research and Development, Ciepłownicza 1, 31-587 Cracow, Poland
Bibliografia
  • [1] H. Bilirgen, Slagging in pc boilers and developing mitigation strategies, Fuel 115 (2014) 618–624.
  • [2] N. Harding, D. O’Connor, Ash deposition impacts in the power industry, Fuel Processing Technology 88 (11) (2007) 1082–1093.
  • [3] L. M. Romeo, R. Gareta, Hybrid system for fouling control in biomass boilers, Engineering Applications of Artificial Intelligence 19 (8) (2006) 915–925.
  • [4] L. M. Romeo, R. Gareta, Fouling control in biomass boilers, Biomass and bioenergy 33 (5) (2009) 854–861.
  • [5] A. Syed, N. Simms, J. Oakey, Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass, Fuel 101 (2012) 62–73.
  • [6] J. Taler, M. Trojan, D. Taler, Monitoring of Ash Fouling and Internal Scale Deposits in Pulverized Coal Fired Boilers, Nova Science Publishers, New York, 2011.
  • [7] J. C. Stępień , A. Salij, M. E. Poniewski, Impact of biomass cofiring on selected parameters of a 225 mw power unit, Journal of Power Technologies 95 (Polish Energy Mix 2014) (2015) 84–90.
  • [8] H. Othman, J. Purbolaksono, B. Ahmad, Failure investigation on deformed superheater tubes, Engineering Failure Analysis 16 (1) (2009) 329–339.
  • [9] A. K. Ray, Y. Tiwari, R. Sinha, P. Roy, S. Sinha, R. Singh, S. Chaudhuri, Remnant life assessment of service-exposed pendent superheater tubes, Engineering Failure Analysis 9 (1) (2002) 83–92.
  • [10] P. Madejski, D. Taler, Analysis of temperature and stress distribution of superheater tubes after attemperation or sootblower activation, Energy Conversion and Management 71 (2013) 131–137.
  • [11] N. Kuznetsov, W. Mitor, I. Dubovski, E. Karasina, Thermal calculations of steam boilers. standard method, Energia: Moscow, Russia.
  • [12] A. Blokh, Heat transfer in steam boiler furnaces, hemisphere, Washington, DC.
  • [13] S. Kakac, Boilers, evaporators, and condensers, John Wiley & Sons, 1991.
  • [14] J. Taler (Ed.), Thermal and flow processes in large steam boilers. Modeling and monitoring, WNT Scientific and Technical Publishing, Warsaw, 2011, in Polish.
  • [15] W. Wagner, H. J. Kretzschmar, International Steam Tables Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, Springer-Verlag, Berlin, 2008.
  • [16] J. Taler, D. Taler, P. Ludowski, Measurements of local heat flux to membrane water walls of combustion chambers, Fuel 115 (2014) 70–83.
  • [17] J. Taler, D. Taler, Heat Flux: Processes, Measurement Techniques and Applications, Nova Science Publishers, New York, 2012, Ch. Measurement of heat flux and heat transfer coefficient, pp. 1–104.
  • [18] P. Duda, J. Taler, A new method for identification of thermal boundary conditions in water-wall tubes of boiler furnaces, International Journal of Heat and Mass Transfer 52 (5–6) (2009) 1517–1524.
  • [19] J. Taler, D. Taler, Heat Transfer, InTech, Rijeka–Shanghai, 2012, Ch. Measurements of Local Heat Flux and Water-Side Heat Transfer Coefficient in Water Wall Tubes, pp. 3
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-72b5cb5c-575c-44a8-9250-0718a1b753b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.