Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 72, nr 3 | art. no. e149176
Tytuł artykułu

Synergistic toughening and strengthening of an epoxy resin modified by simultaneous use of two different modifiers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work investigates the effect of modifying an epoxy resin using two different modifiers. The mechanical and thermal properties were evaluated as a function of modifier type and content. The structure and morphology were also analyzed and related to the measured properties. Polyurethane (PUR) was used as a liquid modifier, while Cloisite Na+ and Nanomer I.28E are solid nanoparticles. Impact strength (IS) of hybrid nanocomposites based on 3.5 wt% PUR and 2 wt% Cloisite or 3.5 wt% PUR and 1 wt% Nanomer was maximally increased by 55% and 30%, respectively, as compared to the virgin epoxy matrix, exceeding that of the two epoxy/nanoparticle binaries but not that of the epoxy/PUR binary. Furthermore, a maximum increase in IS of approximately 20% as compared to the pristine matrix was obtained with the hybrid epoxy nanocomposite containing 0.5 wt% Cloisite and 1 wt% Nanomer, including a synergistic effect, due most likely to specific interactions between the nanoparticles and the epoxy matrix. The addition of polyurethane and nanoclays increased the thermal stability of epoxy composites significantly. However, DSC results showed that the addition of flexible polyurethane chains decreased the glass transition temperatures, while the softening point and the service temperature range of epoxy nanocomposites containing nanofillers were increased. FTIR analysis confirmed the occurrence of interaction between the epoxy matrix and added modifiers. All SEM micrographs showed significant roughness of the fracture surfaces with the formation of elongated platelets, explaining the increase in mechanical properties of the epoxy matrix.
Wydawca

Rocznik
Strony
art. no. e149176
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Casimir Pulaski University of Radom, Poland
  • Casimir Pulaski University of Radom, Poland
  • Tomas Bata University in Zlin, Czech Republic
  • Independent Researcher
Bibliografia
  • [1] T.B. Sharmila, J.V. Antony, M.P. Jayakrishnan, P.S. Beegum, and E.T. Thachil, “Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide,” Mater. Des., vol. 90, pp. 66–75, 2016, doi: 10.1016/j.matdes. 2015.10.055.
  • [2] K. Tangthana-umrung, X. Zhang, and M. Gresil, “Synergistic toughening on hybrid epoxy nanocomposites by introducing engineering thermoplastic and carbon-based nanomaterials,” Polymer, vol. 245, p. 124703, 2022, doi: 10.1016/j.polymer.2022.124703.
  • [3] D. Matykiewicz, “Hybrid epoxy composites with both powder and fiber filler: a review of mechanical and thermomechanical properties,” Materials, vol. 13, no. 8, p. 1802, 2020, doi: 10.3390/ma13081802.
  • [4] A. Białkowska, M. Bakar, W. Kucharczyk, and I. Zarzyka, ”Hybrid Epoxy Nanocomposites: Improvement in Mechanical Properties and Toughening Mechanisms – A Review,” Polymers., vol. 15, no. 6, p. 1398, 2023, doi: 10.3390/polym15061398.
  • [5] S. Sasidharan and A. Anand, “Epoxy-based hybrid structural composites with nanofillers: A review,” Ind. Eng. Chem., vol. 59, no. 28, pp. 12617–12631, 2020, doi: 10.1021/acs.iecr.0c01711.
  • [6] J.O. Agunsoye, S.A. Bello, L. Bello, and M.M Idehenre, “Assessment of mechanical and wear properties of epoxy-based hybrid composites,” Adv. Prod. Eng. Manag., vol. 11, no. 1, pp. 5–14, 2016, doi: 10.14743/apem2016.1.205.
  • [7] M. Khalina, M.H. Beheshty, and A. Salimi, “The effect of reactive diluent on mechanical properties and microstructure of epoxy resins,” Polym. Bull., vol. 76, pp. 3905–3927, 2019, doi: 10.1007/s00289-018-2577-6.
  • [8] K.P. Unnikrishnan and E.T. Thachil, “Toughening of epoxy resins,” Des. Monomers Polym., vol. 9, no. 2, pp. 129–152, 2006, doi: 10.1163/156855506776382664.
  • [9] R.M. Neves, H.L. Ornaghi Jr, A.J. Zattera, and S.C. Amico, “Toughening epoxy resin with liquid rubber and its hybrid composites: A systematic review,” J. Polym. Res., vol. 29, no. 8, p. 340, 2022, doi: 10.1007/s10965-022-03195-z.
  • [10] M. Bakar, A. Białkowska, I. Kuřitka, B. Hanuliková, and M. Masař, “Synergistic effects of thermoplastic and nanoclay on the performance properties and morphology of epoxy resin,” Polym. Compos., vol. 39, no. S4, pp. 2540–2551, 2018, doi: 10.1002/pc.24828.
  • [11] N. Özmeral, S. Kocaman, U. Soydal, and G. Ahmetli, “Polystyrene waste-modified epoxy/nanoclay and hybrid composite coatings,” J. Appl. Polym., vol. 140, no. 8, p. 53504, 2023, doi: 10.1002/app.53504.
  • [12] U. Farooq, J. Teuwen, and C. Dransfeld, “Toughening of epoxy systems with interpenetrating polymer network (IPN): A review,” Polymers, vol. 12, no. 9, p. 1908, 2020, doi: 10.3390/polym12091908.
  • [13] M. Jawaid, S. Awad, H. Fouad, M. Asim, N. Saba, and H.N. Dhakal, “Improvements in the thermal behaviour of date palm/bamboo fibres reinforced epoxy hybrid composites,” Compos. Struct., vol. 277, p. 114644, 2021, doi: 10.1016/j.compstruct.2021.114644.
  • [14] D. Kim, I. Chung, and G. Kim, “Study on mechanical and thermal properties of fiber-reinforced Epoxy/Hybrid-silica composite,” Fibers Polym., vol. 14, pp. 2141–2147, 2013, doi: 10.1007/s12221-013-2141-9.
  • [15] H. Mohit et al., “Effect of bio-fibers and inorganic fillers reinforcement on mechanical and thermal characteristics on carbon-kevlar-basalt-innegra fiber bio/synthetic epoxy hybrid composites,” J. Mater. Res. Technol., vol. 23, pp. 5440–5458, 2023, doi: 10.1016/j.jmrt.2023.02.162.
  • [16] N.A. Rejab, J.O. Akindoyo, H.Y. Atay, J.S Binoj, and M. Jaafar, “Flexural and flame retardance properties of multi-walled carbon nanotubes/glass fibre/epoxy hybrid composites,” Constr. Build. Mater., vol. 387, p. 131677, 2023, doi: 10.1016/j.conbuildmat.2023.131677.
  • [17] X. Mi et al., ”Toughness and its mechanisms in epoxy resins,” Prog. Mater. Sci., vol. 130, p. 100977, 2022, doi: 10.1016/j.pmatsci.2022.100977.
  • [18] D. Carolan, A. Ivankovic, A.J. Kinloch, S. Sprenger, and A.C. Taylor, “Toughening of epoxy-based hybrid nanocomposites,” Polymer, vol. 97, pp. 179–190, 2016, doi: 10.1016/j.polymer.2016.05.007.
  • [19] X.J. Shen, X.Q. Pei, Y. Liu, and S.Y. Fu, “Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites,” Compos. B. Eng., vol. 57, pp. 120–125, 2014, doi: 10.1016/j.compositesb.2013.09.050.
  • [20] M.K. Shukla and K. Sharma, “Improvement in mechanical and thermal properties of epoxy hybrid composites by functionalized graphene and carbon-nanotubes,” Mater. Res. Express, vol. 6, no. 12, p. 125323, 2019, doi: 10.1088/2053-1591/ab5561.
  • [21] Z. Qi, Y. Tan, Z. Zhang, L. Gao, C. Zhang, and J. Tian, “Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites,” RSC Adv., vol. 8, no. 67, pp. 38689–38700, 2018, doi: 10.1039/C8RA08312F.
  • [22] A. Bisht, K. Dasgupta, and D. Lahiri, “Evaluating the effect of addition of nanodiamond on the synergistic effect of graphene-carbon nanotube hybrid on the mechanical properties of epoxy based composites,” Polym. Test., vol. 81, p. 106274, 2020, doi: 10.1016/j.polymertesting.2019.106274.
  • [23] S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nüesch, and B.T.T. Chu, “Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites,” Carbon, vol. 50, no. 15, pp. 5380–5386, 2012, doi: 10.1016/j.carbon.2012.07.021.
  • [24] L. Yue, G. Pircheraghi, S.A. Monemian, and I. Manas-Zloczower, “Epoxy composites with carbon nanotubes and graphene nanoplatelets – Dispersion and synergy effects,” Carbon, vol. 78, pp. 268–278, 2014, doi: 10.1016/j.carbon.2014.07.003.
  • [25] Z.A. Ghaleb, M. Mariatti, and Z.M. Ariff, “Synergy effects of graphene and multiwalled carbon nanotubes hybrid system on properties of epoxy nanocomposites,” J. Reinf. Plast. Compos., vol. 36, no. 9, pp. 685–695, 2017, doi: 10.1177/0731684417692055.
  • [26] N.P. Singh, V.K. Gupta, A.P. Singh, and B. Sapra, “Synergistic effects of graphene nanoplatelets and NH2-MWCNTs on cryogenic mechanical properties of epoxy nanocomposites,” Polym. Test., vol. 94, p. 107032, 2021, doi: 10.1016/j.polymertesting.2020.107032.
  • [27] A. Kumar, K. Sharma, and A.R. Dixit, “A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene,” Carbon Lett., vol. 31, no. 2, pp. 149–165, 2021, doi: 10.1007/s42823-020-00161-x.
  • [28] M.M. Yazik et al., “Effect of hybrid multi-walled carbon nanotube and montmorillonite nanoclay content on mechanical properties of shape memory epoxy nanocomposite,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 6085–6100, 2020, doi: 10.1016/j.jmrt.2020.04.012.
  • [29] E. Kazemi-Khasragh, F. Bahari-Sambran, C. Platzer, and R. Eslami-Farsani, “The synergistic effect of graphene nanoplatelets–montmorillonite hybrid system on tribological behavior of epoxy-based nanocomposites,” Tribol. Int., vol. 151, p. 106472, 2020, doi: 10.1016/j.triboint.2020.106472.
  • [30] P. Tang et al., “Layered montmorillonite/3d carbon nanotube networks for epoxy composites with enhanced mechanical strength and thermal properties,” ACS Appl. Nano Mater., vol. 5, no. 6, pp. 8343–8352, 2022, doi: 10.1021/acsanm.2c01404.
  • [31] M. Gazderazi and M. Jamshidi, “Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites: Influence on mechanical and thermal performances,” J. Appl. Polym. Sci., vol. 133, no. 34, p. 43834, 2016, doi: 10.1002/app.43834.
  • [32] A. Kumar, S. Saini, K.L. Yadav, P.K. Ghosh, and A. Rathi, “Morphology and tensile performance of MWCNT/TiO2-epoxy nanocomposite,” Mater. Chem. Phys., vol. 277, p. 125336, 2022, doi: 10.1016/j.matchemphys.2021.125336.
  • [33] A.K. Upadhyay, M. S Goyat, and A. Kumar, “A review on the effect of oxide nanoparticles, carbon nanotubes, and their hybrid structure on the toughening of epoxy nanocomposites,” J. Mater. Sci., vol. 57 no. 28, pp. 13202–13232, 2022, doi: 10.1007/s10853-022-07496-y.
  • [34] M. Safaei, R. Abedinzadeh, A. Khandan, R. Barbaz-Isfahani, and D. Toghraie, “Synergistic effect of graphene nanosheets and copper oxide nanoparticles on mechanical and thermal properties of composites: Experimental and simulation investigations,” Mater. Sci. Eng. B, vol. 289, p. 116248, 2023, doi: 10.1016/j.mseb.2022.116248.
  • [35] A. Rathi and S.I. Kundalwal, “Synergistic effect of ultrasonically assisted exfoliated MWCNTs by ZrO2 nanoparticles on thermo-mechanical and anti-corrosive properties of epoxy nanocomposites,” J. Compos. Mater., vol. 56, pp. 1633–1649, 2022 doi: 10.1177/00219983221084770.
  • [36] M. Bakar, M. Lavorgna, J. Szymańska, and A. Dętkowska, “Epoxy/polyurethane/clay ternary nanocomposites–Effect of components mixing sequence on the omposites properties,” Polym. Plast. Technol. Eng., vol. 51, no. 7, pp. 675–681, 2012, doi: 10.1080/03602559.2012.661904.
  • [37] I. Isik-Gulsac, U. Yilmazer, and G. Bayram, “Effects of mixing sequence on epoxy/polyether polyol/organoclay ternary nanocomposites,” Plast. Rubber Compos., vol. 49, no. 8, pp. 368–377, 2020, doi: 10.1080/14658011.2020.1763661.
  • [38] M. Bakar. “Wytrzymałość mechaniczna” in Właściwości Mechaniczne Polimerów, Wydawnictwo Politechniki Radomskiej, 2009. (in Polish)
  • [39] A.J. Kinloch and R.J. Young, “Fracture mechanics” in Fracture Behaviour of Polymers Applied Science Publishers, 1983, p. 102. doi: 10.1007/978-94-017-1594-2.
  • [40] J. Liu, W.J. Boo, A. Clearfield, and H.J. Sue, “Intercalation and exfoliation: a review on morphology of polymer nanocomposites reinforced by inorganic layer structures,” Mater. and Manuf., vol. 21, no. 2, pp. 143–151, 2006, doi: 10.1080/AMP-200068646.
  • [41] A.A. Azeez, K.Y. Rhee, S.J. Park, and D. Hui, “Epoxy clay nanocomposites–processing, properties and applications: A review,” Compos. B. Eng., vol. 45, no. 1, pp. 308–320, 2013, doi: 10.1016/j.compositesb.2012.04.012.
  • [42] M. Bakar and J. Szymańska, “Property enhancement of epoxy resin using a combination of amine-terminated butadiene–acrylonitrile copolymer and nanoclay,” J. Thermoplast. Compos. Mater., vol.27, no. 9, pp. 1239–1255, 2014, doi: 10.1177/0892705712470265.
  • [43] S.P. Lin, J.L Han, J.T. Yeh, F.C. Chang, and K.H. Hsieh, “Composites of UHMWPE fiber reinforced PU/epoxy grafted interpenetrating polymer networks,” Eur. Polym. J., vol. 43, no. 3, pp. 996–1008, 2007, doi: 10.1016/j.eurpolymj.2006.12.001.
  • [44] H. Harani, S. Fellahi, and M. Bakar, “Toughening of epoxy resin using synthesized polyurethane prepolymer based on hydroxyl-terminated polyesters,” J. Appl. Polym. Sci., vol. 70, no. 13, pp. 2603–2618, 1998, doi: 10.1002/(SICI)1097-4628(19981226)70:13<2603::AID-APP6>3.0.CO;2-4.
  • [45] J. Szymańska, M. Bakar, M. Kostrzewa, and M. Lavorgna, “Preparation and characterization of reactive liquid rubbers toughened epoxy-clay hybrid nanocomposites,” J. Polym. Eng., vol. 36, no. 1, pp. 43–52, 2016, doi: 10.1515/polyeng-2014-0393.
  • [46] H. Harani, S. Fellahi, and M. Bakar, “Toughening of epoxy resin using hydroxyl-terminated polyesters,” J. Appl. Polym. Sci., vol. 71, no. 1, pp. 29–38, 1999, doi: 10.1002/(SICI)1097-4628(19990103)71:1<29::AID-APP5>3.0.CO;2-7.
  • [47] I. Kırbaş, “Effects of pumice additions on thermal and mechanical behaviors of epoxy resin,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e146286, 2023, doi: 10.24425/bpasts.2023.146286.
  • [48] D. Ondrušová et al., “Targeted modification of the composition of polymer systems for industrial applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 2, p. e136721, 2021, doi: 10.24425/bpasts.2021.136721.
  • [49] A. Białkowska, M. Przybyłek, M. Sola-Wdowska, M. Masař, and M. Bakar, “Mechanical properties and mullins effect in rubber reinforced by montmorillonite,” Bull. Pol. Acad. Sci. Tech. Sci., vol.71, no. 5, p. e147059, 2023, doi: 10.24425/bpasts.2023.147059.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7291f060-e0ff-483d-a24b-d2cb69b5b19e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.