Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 49, no. 4 | 11--20
Tytuł artykułu

Study of Zn(II) ion removal from galvanic sludge by geopolymers

Treść / Zawartość
Warianty tytułu
PL
Badania usuwania jonów cynku z osadów galwanicznych przez geopolimery
Języki publikacji
EN
Abstrakty
EN
The galvanic sludges contain a number of toxic heavy metals, potentially mobilized as chemically active ions under environmental conditions as. This study explores the application of fly ash-based geopolymers for the removal of Zn ions from galvanizing sludge. In this study, geopolymers, synthesized via the geopolymerization method, were used to remove Zn from post-galvanized sewage sludge. Two types of geopolymers were used, derived from ash from coal combustion and biomass combustion. Structural, morphological, and surface properties were characterized using FTIR and SEM, respectively. In addition, BET and Langmuir isotherms, along with analyses such as t-Plot and BJH method for porous solids were conducted. The results indicate that the geopolymer derived from coal combustion ash is a more effective sorbent for Zn(II) ions, exhibiting a removal efficiency of 99.9%, compared to 40.7% for the geopolymer derived from biomass combustion ash. The FTIR spectra analysis reveals the presence of bonds between the -OH and/or Si-OH groups on the geopolymers’ surface and the Zn(II) ions. The environmentally and economically advantageous process maximizes the recovery of a valuable component at minimal cost, yielding relatively clean monometallic waste suitable for reuse.
PL
Osady galwaniczne zawierają szereg toksycznych metali ciężkich, które w warunkach środowiskowych mogą być mobilne jako chemicznie aktywne jony. W pracy badano możliwość wykorzystania geopolimerów na bazie popiołów lotnych do usuwania jonów Zn z osadu galwanizacyjnego. W pracy do usuwania Zn z galwanicznych osadów ściekowych wykorzystano geopolimery przygotowane metodą geopolimeryzacji. Zastosowano dwa rodzaje geopolimerów, otrzymywane na bazie popiołów ze spalania węgla i popiołów ze spalania biomasy. Strukturę, morfologię i właściwości powierzchni scharakteryzowano odpowiednio za pomocą FTIR i SEM. Dodatkowo wyznaczono izotermę BET i Langmuira oraz przeprowadzono analizę tych izoterm dla ciał porowatych (metoda t-Plot i metoda BJH). Wykazano, że geopolimer otrzymany z popiołów ze spalania węgla jest skuteczniejszym sorbentem dla jonów Zn(II). Skuteczność usuwania jonów Zn(II) dla geopolimeru na bazie popiołów ze spalania węgla wynosi 99,9%, a dla geopolimeru na bazie popiołów ze spalania biomasy 40,7%. Otrzymane rezultaty są wynikiem powstawania wiązań pomiędzy grupami -OH i/lub Si-OH obecnymi na powierzchni zastosowanych geopolimerów a jonami Zn(II), których obecność stwierdzono na podstawie analizy widm FTIR. Procedura ta jest korzystna z ekologicznego i ekonomicznego punktu widzenia ponieważ zapewnia maksymalny odzysk cennego składnika przy możliwie najniższych kosztach. Ponadto, pozwala na uzyskanie stosunkowo czystych odpadów monometalicznych, które można ponownie wykorzystać
Słowa kluczowe
EN
Wydawca

Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
Bibliografia
  • [1]. Adewuyi, YG. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation, ACS Omega, 24, pp. 15532-15542. DOI:10.1021/acsomega.1c00662
  • [2]. Akono, A.T., Koric, S. & Kriven, W.M. (2019). Influence of pore structure on the strength behavior of particle- and fiber reinforced metakaolin-based geopolymer composites, Cement and Concrete Composites, 104, pp. 103361. DOI:10.1016/j.cemconcomp.2019.103361
  • [3]. Alehyen, S., Zerzouri, M., el Alouani, M., el Achouri, M. & Taibi M. (2017). Porosity and fire resistance of fly ash based geopolymer. Journal of Materials and Environmental Sciences, 8, pp. 3676-3689
  • [4]. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. & Odeyemi, O. (2020). Waste management through composition: Challenges and Potentials, Sustainability, 12, pp. 4456-4479. DOI:10.3390/su12114456
  • [5]. Barakat, M.A. (2003). The pyrometallurgical processing of galvanizing zinc ash and flue dust, Journal of Minerals, Metals & Materials Society, 55, pp. 26–29. DOI:10.1007/s11837-003-0100-4
  • [6]. Bednarik, M., Vondruska, M.& Koutny, M. (2005). Stabilization/solidification of galvanic sludges by asphalt emulsions, Journal of Hazardous Materials, 122, pp. 139-145. DOI:10.1016/j.jhazmat.2005.03.021
  • [7]. Brylewska, K., Rożek, P., Król, M. & Mozgawa, W. (2018). The influence of dealumination/desilication on structural properties of metakaolin-based geopolymers, Ceramics International, 44, pp. 12853-12861. DOI:10.1016/J.CERAMINT.2018.04.095
  • [8]. Butenegro, J.A., Bahrami, M., Abenojar, J. & Martínez, M.A. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers, Materials, 14, pp. 6401. DOI:10.3390/ma14216401
  • [9]. Donohue, M.D. & Aranovich, G.L. (1998). Adsorption hysteresis in porous solids, Journal of Colloid and Interface Science, 205, pp. 121-130. DOI:10.1006/jcis.1998.5639
  • [10]. Dvořák, P. & Jandova, J. (2005). Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, pp. 29-33. DOI:10.1016/j.hydromet.2004.10.007
  • [11]. Galas, D., Kalembkiewicz, J. & Sitarz-Palczak, E. (2016). Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland, Contemporary Trends in Geoscience, 5, pp. 83-91. DOI:10.1515/ctg-2016-0006
  • [12]. Jha, M.K., Kumar, V.& Singh R.J. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33, pp. 1-22. DOI:10.1016/S0921-3449(00)00095-1
  • [13]. Imtiaz, L., Rehman, S.K.U., Memon, S.A., Khan, M.K. & Javed, M.F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete, Applied Sciences, 10, pp. 7838-7894. DOI:10.3390/app10217838
  • [14]. Irisawa, T., Iwamura, R., Kozawa, Y., Kobayashi, S. & Tanabe, Y. (2021). Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers, Carbon, 175, pp. 605. DOI:10.1016/j.carbon.2021.01.042
  • [15]. Jeyasundar, P.G.S.A., Ali, A. & Zhang, Z. (2020). Waste treatment approaches for environmental sustainability, Microorganisms for Sustainable Environmental and Health, 6, pp. 119-135. DOI:10.1016/B978-0-12-819001-2.00006-1
  • [16]. Khan, M.N.N., Kuri, J.C. & Sarker, P.K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars, Journal of Building. Engineering, 34, pp. 101934-101945. DOI:10.1016/j.conbuildmat.2020.120177
  • [17]. Kriven W.M., Bell J.L. & Gordon M. (2006). Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. In: Bansal, N.P., Singh, J.P., Kriven, W.M., Schneider, H., Advances in Ceramic Matrix Composites IX (pp. 227-250). The American Ceramic Society, Wiley, New York 2006.
  • [18]. Krishnan, S., Zulkapli, N.S., Kamyab, H., Taib, S.M., Bin Md Din, M.F., Majid, Z.A., Chaiprapat, S., Kenzo, I., Ichikawa, Y., Nasrullah, M., Chelliapan, S. & Othman, N. (2021). Current technologies for recovery of metals from industrial wastes: An overview, Environmental Technology & Innovation, 22, pp.101525. DOI:10.1016/j.eti.2021.101525
  • [19]. Król, M., Rożek, P., Chlebda ,D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33-37. DOI:https://doi.org/10.1016/j.saa.2018.02.067
  • [20]. Krstić, I., Zec, S., Lazarević, V., Stanisavljević, M. & Golubović, T (2018). Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure, Science of Sintering, 50, pp. 139-147. DOI:10.2298/SOS1802139K
  • [21]. Kwon, O-S. & Sohn, I.L. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process, Resources, Conservation and Recycling, 158, pp. 104809. DOI:10.1016/j.resconrec.2020.104809.
  • [22]. Letcher, R.M.b& Vallero, D.A. (2019). Waste. A Handbook for Management, 2, pp. 585-630. DOI:10.1016/B978-0-12-381475-3.10034-8
  • [23]. Li, M., Xu, J. & Li, B. (2018). Analysis of development of hazardous waste disposal technology in China, IOP Conf. Series: Earth and Environmental Science, 178, pp. 1-7. DOI:10.1088/1755-1315/178/1/012027
  • [24]. Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H. & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta China, Journal of Soil and Sediments, 17, pp. 780-789. DOI:10.1007/s11368-016-1361-1
  • [25]. Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E., Sarkkinen, M., Kemppainen, K.,Rämö, J. & Lassi, U. (2016). Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers, Journal of.Environmental Management, 166, pp. 579-588. DOI:10.1016/j.jenvman.2015.11.007
  • [26]. Luz, C.A., Rocha, J.C., Cheriaf, M. & Pera, ,J. (2009). Valorization of galvanic sludge in sulfoaluminate cement, Construction and Building Materials, 23, pp. 595-601. DOI:10.1016/j.conbuildmat.2008.04.004
  • [27]. Makisha, N. & Yunchina, M. (2017). Methods and solutions for galvanic waste water treatment, MATEC Web of Conferences, 106, pp. 1-6. DOI:10.1051/matecconf/201710607016
  • [28]. Nanda, S. & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review, Environmental Chemical Letter, 19, pp. 1433-1456. DOI:10.1007/s10311-020-01100-y
  • [29]. Pu, S., Duan, P., Yan, C. & Ren, D. (2016). Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste. Advanced Powder Technology,27, pp. 2470-2477. DOI:10.1016/j.apt.2016.09.002
  • [30]. Riaz, M., Bing Chen, A., Aminul Haque, M. & Shah, S.F.A. (2020). Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal biocomposites, Journal of Cleaner Production, 250, pp. 119469. DOI:10.1016/j.jclepro.2019.119469
  • [31]. Rossini, G. & Bernardes, A.M. (2006). Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment, Journal of Hazardous Materials, 131, pp. 210-216. DOI:10.1016/j.jhazmat.2005.09.035.
  • [32]. Rudnik, E. (2019). Investigation of industrial waste materials for hydrometallurgical recovery of zinc, Minerals Engineering,139, pp. 105871. DOI:10.1016/j.mineng.2019.105871
  • [33]. Rybak, J., Gorbatyuk, S.M., Bujanovna-Syuryun, K.C., Khairutdinov, A., Tyulyaeva, Y. & Makarov, P.S. (2021). Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company, Metallurgist, 64, pp. 851-861. DOI:10.1007/s11015-021-01065-5
  • [34]. Sanito, R.C., Bernuy-Zumaeta, M., You, S-J. & Wang Y-F. (2022). A review on vitrification technologies of hazardous waste, Journal of Environmental Management, 316, pp. 115243. DOI:10.1016/j.jenvnman.2022.115243
  • [35]. Sinha, S., R. Choudhari, R., Mishra, D., Shekhar, S., Agrawal, A. & Sahu, K.K. (2020). Valorisation of waste galvanizing dross: Emphasis on recovery of zinc with zero effluent strategy, Journal of Environmental Management, 256, pp. 109985. DOI:10.1016/j.jenvman.2019.109985
  • [36]. Sitarz–Palczak, E.; Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection 45, pp. 126-135. DOI:10.24425/aep.2019.126427
  • [37]. Stepanov, S., Morozov, N., Morozova, N., Ayupov, D., Makarov, D. & Baishev, D. (2016). Efficiency of Use of Galvanic Sludge in Cement Systems, Procedia Engineering, 165, pp.1112-1117. DOI:10.1016/j.proeng.2016.11.827
  • [38]. Świerk, K., Bielicka, A., Bojanowska, I. & Maćkiewicz, Z. (2007). Investigation of Heavy Metals Leaching from industrial wastewater sludge, Polish Journal of Environmental Studies, 16, pp. 447-451.
  • [39]. Šćiban, M., Radetić, B., Kevrešan, Z. & Klašnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, pp. 402-409. DOI:10.1016/j.biortech.2005.12.014
  • [40]. Toledo, M., Siles, J.A., Gutierrez, M.C. & Martin, M.A. (2018). Monitoring of the composting process of different agroindustrial waste: influence of the operational variables on the odorous impact, Waste Management, 76, pp. 266-274. DOI:10.1016/j.wasman.2018.03.042
  • [41]. Ugwu, E.I. & Agunwamba, J.C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater, Environmental Monitoring and Assessment, 192, pp. 240-252. DOI:10.1007/s10661-020-8162-0
  • [42]. Yang, J., Firsbach, F. & Sohn, I.L. (2022). Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resources, Conservation and Recycling, 178, pp. 106021. DOI:10.1016/j.resconrec.2021.106021
  • [43]. Zehua, J., Liya, S. & Yuansheng, P. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers, Materials Chemistry and Physics, 242, pp. 1-9. DOI:10.1016/j.matchemphys.2019.122535
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-723e2b00-ef49-4a0d-985c-00d50b9a9bb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.