Czasopismo
2022
|
Vol. 70, no 6
|
2771--2783
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The objective of the study is to determine the impact of land use and land cover (LULC) change on land surface temperature (LST) and thermal stress at Jorhat from 2009 to 2021. The experiment used Landsat TM (Thematic Mapper) for 2009 and OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) for 2021 from earth.explorer.usgs.gov. Landsat data were employed to calculate the LST and LULC changes. Utilizing UTFVI (urban thermal field variance index), thermal stress over the ground surface has been computed. Thermal discomfort is computed simultaneously using the relative strain index (RSI) and net effective temperature (NET) index. Jorhat evidenced significant rise in built-up land to 281.25 hectares with reduced vegetation cover of 480.96 hectares from 2009 to 2021. These modifications caused significant rises in LST of 4.28 °C, 2.33 °C and 3.01 °C in September, October and December from 2009 to 2021. According to UTFVI from 2009 to 2021, Jorhat experienced declining ecologically excellent area with a rising proportion of ecologically worse land. In September and October 2009, the Jorhat city had just 10 days of bioclimatic discomfort and 19 days of bioclimatic comfort, as opposed to 24 and 10 days in 2021, respectively. Similarly, NET estimated 21 very hot days in October 2021, as opposed to just 9 days in 2009. Compared to 2009, there are now 6 and 4 days in December 2021 that are classified as warm or slightly hot, respectively. This leads to the conclusion that Jorhat's thermal condition is significantly impacted by changes in land use and land cover.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
2771--2783
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
autor
- Gargaon College, Sivasagar, India, rituraj.neog08@gmail.com
autor
- Department of Statistics, Dibrugarh University, Dibrugarh, India
Bibliografia
- 1. Alfraihat R, Mulugeta G, Gala TS (2016) Ecological evaluation of urban heat island in Chicago City, USA. J Atmos Pollut 4(1):23–29
- 2. Argueso D, Evans J, Fita L, Bormann K (2013) Temperature response to future urbanization and climate change. Clim Dyn. https://doi.org/10.1007/s00382-013-1789-6
- 3. Asghari M, Ghalhari GF, Abbasinia M, Shakeri F, Tajik R, Ghannadzadeh MJ (2020) Feasibility of relative strain index (RSI) for the assessment of heat stress in outdoor environments: case study in three different climates of Iran. Open Ecol J 13:11–18
- 4. Babalola OS, Akinsanola AA (2016) Change detection in land surface temperature and land use land cover over Lagos Metropolis, Nigeria. J Remote Sens GIS. https://doi.org/10.4172/2469-4134.1000171
- 5. Carlson TN, Ripley DA (1997) On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ 62:241–252
- 6. Feng L, Zhao M, Zhou Y, Zhu L, Tian H (2020) The seasonal and annual impacts of landscape patterns on the urban thermal comfort using landsat. Ecol Indic 110:105798
- 7. Gohain KJ, Mohammad P, Goswami A (2021) Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quatern Int 575–576:259–269. https://doi.org/10.1016/j.quaint.2020.04.052
- 8. Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319(5864):756–760
- 9. Guha S, Govil H, Mukherjee S (2017) Dynamic analysis and ecological evaluation of urban heat islands in Raipur city. J Appl Remote Sens 11(03):1. https://doi.org/10.1117/1.JRS.11.036020
- 10. Guha S, Govil H, Dey A, Gill N (2018) Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI/TIRS data in Florence and Naples city. Italy Eur J Remote Sens 51(1):667–678
- 11. Gupta S, Roy M (2012) Land use/land cover classification of an urban area -a case study of Burdwan municipality, India. Int J Geomat Geosci 2(4):1015–1026
- 12. Hegazy IR, Kaloop MR (2015) Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int J Sustain Built Environ 4(1):117–124. https://doi.org/10.1016/j.ijsbe.2015.02.005
- 13. Igun E, Williams M (2018) Impact of urban land cover change on land surface temperature. Global J Environ Sci Manag 4(1):47–58. https://doi.org/10.22034/gjesm.2018.04.01.005
- 14. Imran HM, Kala J, Ng AWM, Muthukumaran S (2018) An evaluation of the performance of a WRF multi-physics ensemble for heatwave events over the city of Melbourne in southeast Australia. Clim Dyn 50(7):2553–2586. https://doi.org/10.1007/s00382-017-3758-y
- 15. Imran HM, Kala J, Ng A, Muthukumaran S (2019a) Effectiveness of vegetated patches as Green Infrastructure in mitigating urban heat island effects during a heatwave event in the City of Melbourne. Weather Climate Extremes 25:100217. https://doi.org/10.1016/j.wace.2019.100217
- 16. Imran HM, Kala J, Ng A, Muthukumaran S (2019b) Impacts of future urban expansion on urban heat island effects during heatwave events in the city of Melbourne in Southeast Australia. Q J R Meteorol Soc. https://doi.org/10.1002/qj.3580
- 17. Imran HM, Hossain A, Islam AKMS et al (2021) Impact of land cover changes on land surface temperature and human thermal comfort in Dhaka City of Bangladesh. Earth Syst Environ 5:667–693. https://doi.org/10.1007/s41748-021-00243-4
- 18. Ionac N, Ciulache S (2004) Bioclimatic considerations on the Moldavian Plain (article in Romanian). In: Proceedings of the Geographic seminar “D. Cantemir”, Bucharest, Romania, 25:20–29
- 19. Ionac N, Ciulache S (2007) The bioclimatic stress in Dobrudja. Present Environ Sustain Dev 1:168–178
- 20. Jahan K, Pradhanang SM, Bhuiyan MAE (2021) Surface runoff responses to suburban growth: an integration of remote sensing, GIS, and curve number. Land 10(5):452. https://doi.org/10.3390/land10050452
- 21. John J, Bindu G, Srimuruganandam B, Wadhwa A, Rajan P (2020) Land use/land cover and land surface temperature analysis in Wayanad district, India, using satellite imagery. Ann GIS. https://doi.org/10.1080/19475683.2020.1733662
- 22. Kotharkar R, Bagade A (2017) Urban climate local climate zone classification for Indian cities: a case study of Nagpur. Urban Climate. https://doi.org/10.1016/j.uclim.2017.03.003
- 23. Kotharkar R, Bagade A (2017a) Evaluating urban heat island in the critical local climate zones of an Indian city. Landsc Urban Plan 169:92–104. https://doi.org/10.1016/j.landurbplan.2017.08.009
- 24. Kruse PW, McGlauchlin LD, McQuistan RB (1962) Elements of infrared technology: generation, transmission and detection; Wiley: New York. Wiley, NY, p 1962
- 25. Lai D, Guo D, Hou Y, Lin C, Chen Q (2014) Studies of outdoor thermal comfort in Northern China. Build Environ 77:110–118
- 26. Li ZL, Ning HW, Shi W, Sobrino JA, Wan ZB, Tang H, Yan G (2013) Land surface emissivity retrieval from satellite data. Int J Remote Sens 34(9–10):3084–3127
- 27. Liu L, Zhang Y (2011a) Urban heat island analysis using the landsat TM data and ASTER data: a case study in Hong Kong. Remote Sens 3:1535–1552
- 28. Mackey CW, Lee X, Smith RB (2012) Remotely sensing the cooling effects of city scale efforts to reduce urban heat island. Build Environ 49:348–358. https://doi.org/10.1016/j.buildenv.2011.08.004
- 29. Nagarajan M, Basil G (2014) Remote sensing-and GIS-based runoff modeling with the effect of land-use changes (a case study of Cochin corporation). Nat Hazards 73(3):2023–2039
- 30. Neinavaz E, Darvishzadeh R, Skidmore AK, Abdullah H (2019) Integration of landsat-8 thermal and visible-short wave infrared data for improving prediction accuracy of forest leaf area index. Remote Sens 11:390. https://doi.org/10.3390/rs11040390
- 31. Neog R (2022) Understanding the influence of COVID-19 induced lockdown on urban thermal environment of Ranchi city India. Geografisk Tidsskrift-Danish J Geogr. https://doi.org/10.1080/00167223.2022.2053999
- 32. Neog R, Acharjee S, Hazarika J (2021) Spatiotemporal analysis of road surface temperature (RST) and building wall temperature (BWT) and its relation to the traffic volume at Jorhat urban environment, India. Environ Dev Sustain 23:10080–10092. https://doi.org/10.1007/s10668-020-01047-8
- 33. Ng E, Cheng V (2012) Urban human thermal comfort in hot and humid Hong Kong. Energy Build 55:51–65
- 34. Nichol JE (2005) Remote sensing of urban heat islands by day and night. Photogramm Eng Remote Sens 19:1639–1649
- 35. Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Sol Energy 70:227–235
- 36. Nzoiwu CP, Agulue EI, Mbah S, Igboanugo CP (2017) Impact of land use/land cover change on surface temperature condition of Awka Town Nigeria. J Geogr Inf Syst 09(06):763–776. https://doi.org/10.4236/jgis.2017.96047
- 37. Patra S, Sahoo S, Mishra P, Mahapatra SC (2018) Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J Urban Manag 7(2):70–84. https://doi.org/10.1016/j.jum.2018.04.006
- 38. "Provisional Population Totals, Census of India 2011, Urban Agglomerations/Cities having population 1 lakh and above" (PDF). Ministry of Home Affairs, Office of the Registrar General & Census Commissioner, India—Government of India. 2011. 1016/jwace.2019.100217
- 39. Rahman MA, Franceschi E, Pattnaik N et al (2022) Spatial and temporal changes of outdoor thermal stress: influence of urban land covers types. Sci Rep 12:671. https://doi.org/10.1038/s41598-021-04669-8
- 40. Rawat JS, Biswas V, Kumar M (2013) Changes in land use/cover using geospatial techniques: a case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt J Remote Sens Space Sci 16(1):111–117. https://doi.org/10.1016/j.ejrs.2013.04.002
- 41. Rupanarayan and Verma P (2018) Assessment of Relationship between vegetation and land surface temperature of selected Tehsil in Dist-Raipur, Chhattisgarh, India using GIS & remote sensing Technique. Int J Sci Res 10.21275/SR20524183558
- 42. Schwarz N, Schlink U, Franck U, Großmann K (2012) Relationship of land surface and air temperatures and its implications for quantifying urban island indicators-an application for the city of Leipzig (Germany). Ecol Ind 18:693–704. https://doi.org/10.1016/j.ecolind.2012.01.001
- 43. Sekertekin A, Bonafoni S (2020) Land surface temperature retrieval from landsat 5, 7, and 8 over rural areas: assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens 12(2):294. https://doi.org/10.3390/rs12020294
- 44. Shahfahad TS, Rihan M et al (2022) Modelling urban heat island (UHI) and thermal field variation and their relationship with land use indices over Delhi and Mumbai metro cities. Environ Dev Sustain 24:3762–3790. https://doi.org/10.1007/s10668-021-01587-7
- 45. Shapiro Y, Pandolf KB, Goldman RF (1982) Predicting sweat loss response to exercise, environment and clothing. Eur J Appl Physiol Springer London 48:83–96
- 46. Shukla A, Jain K (2019) Modeling urban growth trajectories and spatiotemporal pattern: a case study of Lucknow City, India. J Indian Soc Remote Sens 47(1):139–152. https://doi.org/10.1007/s12524-018-0880-1
- 47. Sobrino JA, Raissouni N, Li ZL (2001) A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2):256–266
- 48. Sobrino JA, Munoz JC, Paolini L (2004) Land surface temperature retrieval from Landsat TM5. Remote Sens Environ 9:434–440
- 49. Sobrino JA, Jimenez-Muoz JC, Soria G, Romaguera M, Guanter L, Moreno J, Plaza A, Martinez P (2008) Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans Geosci Remote Sens 46:316–327
- 50. Taleghani M, Kleerekoper L, Tenpierik M, van den Dobbelsteen A (2015) Outdoor thermal comfort within five different urban forms in the Netherlands. Build Environ 83:65–78
- 51. Unger J (1999) Comparisons of urban and rural bio-climatological conditions in the case of a Central-European city. Int J Biometeorol 43:139–144
- 52. United Nations Department of Economic and Social Affairs PD (2018) World Urbanization 632 Prospects: the 2018 revision, Methodology. Working Paper No. ESA/P/WP.252
- 53. Van De Griend AA, Owe M (1993) On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int J Remote Sens 14:1119–1131. https://doi.org/10.1080/01431169308904400
- 54. Voogt JA, Oke TR (2003) Thermal remote sensing of urban climates. Remote Sens Environ 86:370–384. https://doi.org/10.1016/S0034-4257(03)00079-8
- 55. Wakode HB, Baier K, Jha R, Azzam R (2014) Analysis of urban growth using Landsat TM/ETM data and GIS-a case study of Hyderabad. India Arab J Geosci 7(1):109–121. https://doi.org/10.1007/s12517-013-0843-3
- 56. Wang SLL (2012) Chapter 8—land-surface temperature and thermal infrared emissivity. In: Wang SLL (ed) Advanced remote sensing. Academic Press, Boston, FL, USA, pp 235–271
- 57. Weng Q, Lu D, Schubring J (2004) Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens Environ 89(4):467–483
- 58. Zhang Y (2006) Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect. J Remote Sens 10:789–797
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-72285926-a697-47b6-864b-c4eddaf4e76b