Warianty tytułu
Języki publikacji
Abstrakty
In this study, we collected submarine groundwater discharge (SGD) and seawater samples at six sites in the Bay of Puck, in the southern Baltic Sea, in order to estimate the nutrient distribution in groundwater affected areas. In addition, we estimated nutrient fluxes via SGD, including both fresh SGD (FSGD) and recirculated seawater SGD (RSGD), to the entire Bay of Puck. Phosphate (PO43−) concentrations varied significantly among study sites and seasons, while both ammonium (NH4+) and nitrates (NO3−) concentrations varied only seasonally. The N:P ratio indicated P limitation in most of the samples. The estimated seasonal and annual loads, via SGD, of both dissolved inorganic nitrogen (DIN; 9303 t yr−1) and PO43− (950 t yr−1), were the most significant source of nutrients to the Bay of Puck, and notably higher than quantified before (FSGD nutrient loads of 50 t yr−1 and 56 t yr−1 for DIN and PO43−, respectively). The SGD fluxes reported here indicate some of the highest rates of sediment-water fluxes reported in the Baltic Sea. These results suggest that SGD (both FSGD and RSGD) should be considered as source of chemical substances to the marine environment.
Czasopismo
Rocznik
Tom
Strony
117--125
Opis fizyczny
Bibliogr. 47 poz., mapa, tab., wykr.
Twórcy
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland, beat.sz@iopan.gda.pl
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
- [1] Asmala, E., Carstensen, J., Conley, D. J., Slomp, C. P., Stadmark, J., Voss, M., 2017. Efficiency of the coastal filter: Nitrogen and phosphorus removal in the Baltic Sea. Limnol. Oceanogr. 62 (S1), S222-S238, https://doi.org/10.1002/lno.10644.
- [2] BACC II Author Team, 2015. Second Assessment of Climate Change for the Baltic Sea Basin. Springer, Chem 501 pp., https://doi.org/10.1007/978-3-319-16006-1.
- [3] Bishop, J. M., Glenn, C. R., Amato, D. W., Dulai, H., 2017. Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J. Hydrol.: Reg. Stud. 11, 194-218, https://doi.org/10.1016/j.ejrh.2015.10.008.
- [4] Bublijewska, E., Łęczyński, L., Marciniak, M., Chudziak, Ł., Kłostowska, Ż., Zarzeczańska, D., 2017. In situ measurements of submarine groundwater supply from the Puck Lagoon. Prz. Geol. 65 (11/2), 1173-1178.
- [5] Choi, W.-J., Han, G.-H., Lee, S.-M., Lee, G.-T., Yoon, K.-S., Choi, S.-M., Ro, H.-M., 2007. Impact of land-use types on nitrate concentration and δ 15N in unconfined groundwater in rural areas of Korea. Agr. Ecosyst. Environ. 120, 259-268, https://doi.org/10.1016/j.agee.2006.10.002.
- [6] Conley, D. J., Stockenberg, R., Carman, R. W., Johnstone, R. W., Rahm, L., Wulff, F., 1997. Sediment-water Nutrient Fluxes in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf S. 45 (5), 591-598, https://doi.org/10.1006/ecss.1997.0246.
- [7] Corbett, D. R., Dillon, K., Burnett, W., Schaefer, G., 2002. The spatial variability of nitrogen and phosphorus concentration in a sand aquifer influenced by onsite sewage treatment and disposal systems: a case study on St. George Island, Florida. Environ. Pollut. 117 (2), 337-345, https://doi.org/10.1016/S0269-7491(01)00168-3.
- [8] Diaz, R., Rosenberg, R., 2008. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 321 (5891), 926-929, https://doi.org/10.1126/science.1156401.
- [9] Donis, D., Janssen, F., Liu, B., Wenzhöfer, F., Dellwig, O., Escher, P., Spitzy, A., Böttcher, M. E., 2017. Biogeochemical impast of submarine groundwater discharge on coastal surface sands of the southern Baltic Sea. Estuar. Coast. Shelf S. 189, 131-142, https://doi.org/10.1016/j.ecss.2017.03.003.
- [10] Dzierzbicka-Głowacka, L., Janecki, M., Dybowski, D., Szymczycha, B., Obarska-Pempkowiak, H., Wojciechowska, E., Zima, P., Pietrzak, S., Pazikowska-Sapota, G., Jaworska-Szulc, B., Nowicki, A., Kłostowska, Ż., Szymkiewicz, A., Galer-Tatarowicz, K., Wichorowski, M., Białoskórski, M., Puszkarczuk, T., 2019a. A New Approach for Investigating the Impact of Pesticides and Nutrient Flux from Agricultural Holdings and Land-Use Structures on Baltic Sea Coastal Waters. Pol. J. Environ. Stud. 28 (4), 2531-2539, https://doi.org/10.15244/pjoes/92524.
- [11] Dzierzbicka-Głowacka, L., Pietrzak, S., Dybowski, D., Białoskórski, M., Marcinkowski, T., Rossa, L., Urbaniak, M., Majewska, Z., Juszkowska, D., Nawalany, P., Pazikowska-Sapota, G., Kamińska, B., Selke, B., Korthals, P., Puszkarczuk, T., 2019b. Impact of agricultural farms on the environment of the Puck Commune: Integrated agriculture calculator - CalcGosPuck. PeerJ 7, e6478, https://doi.org/10.7717/peerj.6478.
- [12] Edman, M, Eilola, K, Almroth-Rosell, E, Meier, H. E. M., Wåhlström, I., Arneborg, L., 2018. Nutrient Retention in the Swedish Coastal Zone. Front. Mar. Sci. 5, 415, https://doi.org/10.3389/fmars.2018.00415.
- [13] Graca, B., Witek, Z., Burska, D., Białkowska, I., Łukawska-Matuszewska, K., Bolałek, J., 2006. Pore water phosphate and ammonia below the permanent halocline in the south-eastern Baltic Sea and their benthic fluxes under anoxic conditions. J. Marine Syst. 63, 141-154, https://doi.org/10.1016/j.jmarsys.2006.06.003.
- [14] Institute of Meteorology and Water Management (IMGW) database (https://dane.imgw.pl/data; accessed on 21.08.2019).
- [15] Kłostowska, Ż., Szymczycha, B., Lengier, M., Zarzeczańska, D., Dzierzbicka-Głowacka, L., 2019. Hydrogeochemistry and magnitude of SGD in the Bay of Puck, southern Baltic Sea. Oceanologia 62 (1), 1-11, https://doi.org/10.1016/j.oceano.2019.09.001.
- [16] Knee, K. L., Paytan, A., 2011. 4.08 - Submarine Groundwater Discharge: A Source of Nutrients, Metals, and Pollutants to the Coastal Ocean, Reference Module in Earth Systems and Environmental Sciences. Treatise on Estuarine and Coastal Science 4, 205-233, https://doi.org/10.1016/B978-0-12-374711-2.00410-1.
- [17] Korzeniewski, K. (Ed.), 2003. Zatoka Pucka. Instytut Oceanografii Uniwersytetu Gdanskiego, Gdynia.
- [18] Kotwicki, L., Grzelak, K., Czub, M., Dellwig, O., Gentz, T., Szymczycha, B., Böttcher, M. E., 2014. Submarine groundwater discharge to the Baltic coastal zone: Impacts on the meiofaunal community. J. Marine Syst. 129, 118-126, https://doi.org/10.1016/j.jmarsys.2013.06.009.
- [19] Kozerski, B., 2007, Gdański System Wodonośny, 1st edn. In: Jaworska-Szulc, B., Piekarek-Jankowska, H., Pruszkowska, M., Przewłócka, M. (Eds.). Wyd. PG, Gdańsk, 113 pp.
- [20] Krall, L., Trezzi, G., Garcia-Orellana, J., Rodellas, V., Mörth, C.-M., Andersson, P., 2017. Submarine groundwater discharge at Forsmark, Gulf of Bothnia, provided by Ra isotopes. Mar. Chem. 196, 162-172, https://doi.org/10.1016/j.marchem.2017.09.003.
- [21] Kroeger, K. D., Charette, M. A., 2008. Nitrogen biogeochemistry of submarine groundwater discharge. Limnol. Oceanogr. 53 (3), 1025-1039, https://doi.org/10.4319/lo.2008.53.3.1025.
- [22] Kroeger, K. D., Swarzenski, P. W., Greenwood, Wm. J., Reich, C., 2007. Submarine groundwater discharge to Tampa Bay: Nutrient fluxes and biogeochemistry of the coastal aquifer. Mar. Chem. 104 (1-2), 85-97, https://doi.org/10.1016/j.marchem.2006.10.012.
- [23] Kryza, J, Kryza, H, 2006. The analytic and model estimation of the direct groundwater flow to Baltic Sea on the territory of Poland. Geologos 10, 153-166.
- [24] Lidzbarski, M., 2011. Groundwater Discharge in the Baltic Sea Basin. In: Uścinowicz, Sz. (Ed.), Geochemistry of Baltic Sea Surface and Sediments. Polish Geological Institute-National Research Insitute, Warsaw, Poland, 138-145.
- [25] Liu, J., Su, N., Wang, X., Du, J., 2016. Submarine groundwater discharge and associated nutrient fluxes into the Southern Yellow Sea: A case study for semi-enclosed and oligotrophic seas - implication for green tide bloom. J. Geophys. Res. Oceans 122, 139-152, https://doi.org/10.1002/2016JC012282.
- [26] Łukawska-Matuszewska, K., Burska, D., 2011. Phosphate exchange across the sediment-water interface under oxic and hypoxic/anoxic conditions in the southern Baltic Sea. Oceanol. Hydrobiol. St. 40 (2), 57-71, https://doi.org/10.2478/s13545-011-0017-4.
- [27] Matciak, M., Bieleninik, S., Botur, A., Podgórski, M., Trzcińska, K., Dragańska, K., Jaśniewicz, D., Kurszewska, A., Wenta, M., 2015. Observations of presumable groundwater seepage occurrence in Puck Bay (the Baltic Sea). Oceanol. Hydrobiol. St. 44 (2), 267-272, https://doi.org/10.1515/ohs-2015-0025.
- [28] Peltonen, K., 2002. Direct Groundwater Inflow to the Baltic Sea. TemaNord, Nordic Councils of Ministers, Copenhagen, Netherlands, 79 pp.
- [29] Piekarek-Jankowska, H., Łęczyński, L., 1993. Morfologia dna. In: Korzeniewski, K. (Ed.), Zatoka Pucka. Fundacja Rozwoju UG, Gdańsk, 222-281.
- [30] Piekarek-Jankowska, H., 1994. Zatoka Pucka jako Obszar Drenażu Wód Podziemnych. Wyd. UG, Gdańsk, 31-32 Rozp. Monogr. 204 pp.
- [31] Piekarek-Jankowska, H., 1996. Hydrochemical effects of submarine groundwater discharge to the Puck Bay (southern Baltic Sea, Poland). Geographica Polonica 67, 103-119.
- [32] Salley, B. A., Bradshaw, J. B., Neillo, B. J., 1986. Results of Comparative Studies of Preservation Techniques for Nutrient Analysis on Water Samples. Virginia Institute of Marine Science, Gloucester Point, The United States, 89 pp.
- [33] Savchuk, O. P., 2018. Large-Scale Nutrient Dynamics in the Baltic Sea, 1970-2016. Front. Mar. Sci. 5, 95, https://doi.org/10.3389/fmars.2018.00095.
- [34] Schlüter, M., Sauter, E. J., Andersen, C. E., Dahlgaard, H., Dando, P. R., 2004. Spatial distribution and budget for submarine 749 groundwater discharge in Eckernförde Bay (Western Baltic Sea). Limnol. Oceanogr. 49 (1), 157-167, https://doi.org/10.4319/lo.2004.49.1.0157.
- [35] Slomp, C. P., Van Cappellen, P., 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydro. 295, 64-86, https://doi.org/10.1016/j.jhydrol.2004.02.018.
- [36] Strickland, J. D. H., Parsons, T. R., 1967. A Practical Handbook of Seawater analysis. Fisheries Research Board of Canada Bulletin, Ottawa, 328 pp.
- [37] Szymczycha, B., Vogler, S., Pempkowiak, J., 2012. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Sci. Total Environ. 438, 86-93, https://doi.org/10.1016/j.scitotenv.2012.08.058.
- [38] Szymczycha, B., Maciejewska, A., Winogradow, A., Pempkowiak, J., 2014. Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea? Oceanologia 56 (2), 327-347, https://doi.org/10.5697/oc.56-2.327.
- [39] Szymczycha, B., Kroeger, K. D., Pempkowiak, J., 2016. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea. Mar. Pollut. Bull. 109 (1), 151-162, https://doi.org/10.1016/j.marpolbul.2016.06.008.
- [40] Szymczycha, B., Kroeger, K. D., Crusius, J., Bratton, J. F., 2017. Depth of the vadose zone controls aquifer biogeochemical conditions and extent of anthropogenic nitrogen removal. Water Res. 123, 794-801, https://doi.org/10.1016/j.watres.2017.06.048.
- [41] Valiela, I., Bowen, J. L., Kroeger, K. D., 2002. Assessment of models for estimation of land-derived nitrogen loads to shallow estuaries. Appl. Geochem. 17, 935-953, https://doi.org/10.1016/S0883-2927(02)00073-2.
- [42] Virtasalo, J. J., Schröder, J. F., Luoma, S., Majaniemi, J., Mursu, J., Scholten, J. C., 2019. Hydrographic data, surface seawater radon-222 concentration, and loss on ignition and caesium-137 values of sediment samples from the Hanko submarine groundwater discharge site, northern Baltic Sea. PANGAEA, Finland https://doi.org/10.1594/PANGAEA.898674.
- [43] Viventsowa, E. A., Voronow, A. N., 2003. Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects. Environ. Ecol. 45, 221-225.
- [44] Wang, X., Li, H., Jiao, J. J., Barry, D. A., Li, L., Luo, X., Wang, C., Wan, L., Wang, X., Jiang, X., Ma, Q., Qu, W., 2015. Submarine fresh groundwater discharge into Laizhou Bay comparable to the Yellow River flux. Sci. Rep. 5, https://doi.org/10.1038/srep08814.
- [45] Wang, S., Radny, D., Huang, S., Zhuang, L., Zhao, S., Berg, M., Jetten, M. S. M., Zhu, G., 2017. Nitrogen loss by anaerobic ammonium oxidation in unconfined aquifers soils. Sci. Rep. 7, 40173, https://doi.org/10.1038/srep40173.
- [46] Wojciechowska, E., Nawrot, N., Matej-Łukowicz, K., Gajewska, M., Obarska-Pempkowiak, H., 2018. Seasonal changes of the concentrations of mineral forms of nitrogen and phosphorus in watercourses in the agricultural catchment area (Bay of Puck, Baltic Sea, Poland). Water Supply 19 (3), 986-994, https://doi.org/10.2166/ws.2018.190.
- [47] Zhang, Y., Li, H., Xiao, K., Wang, X., Lu, X., Zhang, M., An, A., Qu, W., Wan, L., Zheng, C., Wang, X., Jiang, X., 2017. Improving Estimation of Submarine Groundwater Discharge Using Radium and Radon Tracers: Application in Jiaozhou Bay, China. J. Geophys. Res.-Oceans 122 (10), https://doi.org/10.1002/2017JC013237.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7182fd80-3154-4048-9d17-17a4079a69eb