Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 6 | 29--44
Tytuł artykułu

Harnessing Agricultural Waste – from Disposal Dilemma to Wealth Creation and Sustainable Solutions Towards UAVs Airframe Manufacturing – A Review

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The escalating global population and subsequent demand for agricultural products have led to a surge in agricultural waste generation, posing significant disposal challenges. Conventional disposal methods such as burning and dumping not only harm the environment but also jeopardize human health and safety. Recognizing the urgent need for sustainable waste management, researchers have increasingly focused on repurposing agricultural plant waste as a valuable resource. This paper presents a comprehensive review of the potential of agricultural plant waste in wealth creation and sustainable development. It highlights the detrimental impacts of current disposal methods and emphasizes the necessity for alternative approaches. By analysing the physical, mechanical, and chemical properties of plant fibers, particularly cellulose, hemicellulose, and lignin, this review underscores their suitability for diverse applications. Moreover, it explores the emerging trend of utilizing pineapple leaf fiber, a sustainable and lightweight material, in structural applications such as UAV construction. With its exceptional mechanical properties and biodegradability, pineapple leaf fiber holds promise as a viable alternative to traditional materials, contributing to a more sustainable future. In conclusion, this review advocates for a paradigm shift towards embracing agricultural plant waste as a valuable asset for economic prosperity and environmental sustainability. It underscores the importance of continued research and technological advancements to unlock the full potential of agricultural waste in fostering a circular economy and driving sustainable development globally.
Wydawca

Rocznik
Strony
29--44
Opis fizyczny
Bibliogr. 112 poz., fig., tab.
Twórcy
  • Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia, farahsyazwani@upm.edu.my
  • Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia, thariq@upm.edu.my
  • Aerospace Malaysia Innovation Centre, Prime Minister’s Department, MIGHT Partnership Hub, Jalan Impact, 63000, Cyberjaya, Selangor, Malaysia
  • Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, a.lukaszewicz@pb.edu.pl
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Al. Piastow 19, 70-310 Szczecin, Poland, rafal.grzejda@zut.edu.pl
  • Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, z.oksiuta@pb.edu.pl
  • Institute of Mechanical Engineering, Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Bialystok, Poland, g.skorulski@pb.edu.pl
  • Smart Manufacturing Research Institute (SMRI), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia, rao@uitm.edu.my
  • School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
Bibliografia
  • 1. Adejumo I.O., Adebiyi O.A. Agricultural solid wastes: causes, effects, and effective management. In: Saleh HM, editor. Strategies of Sustainable Solid Waste Management. IntechOpen. Rijeka, Croatia; 2021; 134–253.
  • 2. Ahmed O.H., Husni M.H.A., Awang Noor A.G. The removal and burning of pineapple residue in pineapple cultivation on tropical peat: An economic viability comparison. PertanikaJ Trop Agric Sci. 2002; 25(1): 47–51.
  • 3. Alzate Acevedo S., Díaz Carrillo Á.J., Flórez-López E., Grande-Tovar C.D. Recovery of banana wasteloss from production and processing: a contribution to a circular economy. Molecules. 2021; 26(17).
  • 4. Fela K., Wieczorek-Ciurowa K., Konopka M., Woźny Z. Present and prospective leather industry waste disposal. Polish J Chem Technol. 2011; 13(3): 53–5.
  • 5. Singh S.P., Jawaid M., Chandrasekar M., Senthilkumar K., Yadav B., Saba N., Siengchin S. Sugar-cane wastes into commercial products: Processing methods, production optimization and challenges. J Clean Prod. 2021; 328.
  • 6. Širá E., Kravčáková Vozárová I., Kotulič R., Dubravská M. EU27 Countries’ sustainable agricultural development toward the 2030 agenda: The circular economy and waste management. Agronomy. 2022; 12(10).
  • 7. Peng X., Jiang Y., Chen Z., Osman A.I., Farghali M., Rooney D.W., Yap P.S. Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environ Chem Lett. 2023.
  • 8. Anand S., Mishra A.K. High-performance materials used for UAV manufacturing: Classified review. Int J All Res Educ Sci Methods. 2022; 10(7): 2455–6211.
  • 9. Zhang J., Lin G., Vaidya U., Wang H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos Part B Eng. 2023; 250.
  • 10. Ramachandran K., Gnanasagaran C.L., Vekariya A. Life cycle assessment of carbon fiber and bio-fiber composites prepared via vacuum bagging technique. J Manuf Process. 2023; 89: 124–31.
  • 11. The World Bank. Agriculture and Food, 2022 [cited 2023Aug 24].Available from: https://www.worldbank.org/en/topic/agriculture/overview#:~:text=Growth in the agriculture sector,more than 25%25 of GDP
  • 12. Ferronato N., Torretta V. Waste mismanagement in developing countries: A review of global issues. Int J Environ Res Public Health. 2019; 16(6).
  • 13. Felgueiras C., Azoia N.G., Gonçalves C., Gama M., Dourado F. Trends on the cellulose-based textiles: Raw materials and technologies. Front Bioeng Biotechnol. 2021; 9.
  • 14. Sahin H.T., Arslan M.B. A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int J Mol Sci. 2008; 9(1): 78–88.
  • 15. Hosny K.M., Alkhalidi H.M., Alharbi W.S., Md S., Sindi A.M., Ali S.A, Bakhaidar R.B., Almehmady A.M., Alfayez E., Kurakula M. Recent trends in assessment of cellulose derivatives in designing novel and nanoparticulate-based drug delivery systems for improvement of oral health. Polymers (Basel). 2022; 14(1).
  • 16. Scheller H.V., Ulvskov P. Hemicelluloses. Annu Rev Plant Biol. 2010 Jun; 61(1): 263–89.
  • 17. Sutay Kocabaş D., Köle M., Yağcı S. Development and optimization of hemicellulose extraction bio-process from poppy (Papaver somniferum L.) stalks assisted by instant controlled pressure drop (DIC) pretreatment. Biocatal Agric Biotechnol. 2020; 29.
  • 18. Ma C., Kim T.H., Liu K., Ma M.G., Choi S.E., Si C. Multifunctional lignin-based composite materials for emerging applications. Front Bioeng Biotechnol. 2021; 9.
  • 19. Wu X., Jiang J., Wang C., Liu J., Pu Y., Ragauskas A., Li S., Yang B. Lignin-derived electrochemical energy materials and systems. Biofuels, Bioprod Biorefining. 2020; 14(3): 650–72.
  • 20. Zhang Y., Jiang M., Zhang Y., Cao Q., Wang X., Han Y., Sun G., Li Y., Zhou J. Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Mater Sci Eng C. 2019; 104.
  • 21. Ebers L.S., Arya A., Bowland C.C., Glasser W.G., Chmely S.C., Naskar A.K., Laborie M.P. 3D printing of lignin: Challenges, opportunities and roads onward. Biopolymers. 2021; 112(6).
  • 22. Yuliah Y., Kartawidjaja M., Suryaningsih S., Ulfi K. Fabrication and characterization of rice husk and coconut shell charcoal based bio-briquettes as alternative energy source. In: IOP Conference Series: Earth and Environmental Science. 2017.
  • 23. Liu C., Luan P., Li Q., Cheng Z., Sun X., Cao D., Zhu H. Biodegradable, Hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative. Matter. 2020; 3(6): 2066–79.
  • 24. Kabeyi M.J.B., Olanrewaju O.A. Biogas production and applications in the sustainable energy transition. Energy. 2022; 1–43.
  • 25. Zheng M., Zhang K., Zhang J., Zhu L.L., Du G., Zheng R. Cheap, high yield, and strong corn huskbased textile bio-fibers with low carbon footprint via green alkali retting-splicing-twisting strategy. Ind Crops Prod. 2022; 188.
  • 26. Achuthan K., Muthupalani S., Kolil V.K., Bist A., Sreesuthan K., Sreedevi A. A novel banana fiber pad for menstrual hygiene in India: a feasibility and acceptability study. BMC Womens Health. 2021; 21(1).
  • 27. Merino D., Bertolacci L., Paul U.C., Simonutti R., Athanassiou A. Avocado peels and seeds: Processing strategies for the development of highly antioxidant bioplastic films. ACS Appl Mater Interfaces. 2021; 13(32): 38688–99.
  • 28. Raghuram N. Recycling crop and animal waste is a win for green farming. Nature India. 2022 Nov;
  • 29. Abed A.M., Lafta H.A., Alayi R., Tamim H., Sharifpur M., Khalilpoor N., Bagheri B. Utilization of animal solid waste for electricity generation in the northwest of iran 3E analysis for one-year simulation. Int J Chem Eng. 2022; 2022.
  • 30. Arshad M., Ansari A.R., Qadir R., Tahir M.H., Nadeem A., Mehmood T., Alhumade H., Khan N. Green electricity generation from biogas of cattle manure: An assessment of potential and feasibility in Pakistan. Front Energy Res. 2022; 10.
  • 31. Oladele I., Omotoyimbo J.A., Ayemidejor S.H. Mechanical properties of chicken feather and cow hair fibre reinforced high density polyethylene composites. Int J Sci Technol. 2014; 3(1): 66–72.
  • 32. Patil K., Wang X., Lin T. Electrostatic coating of cashmere guard hair powder to fabrics: Silver ion loading and antibacterial properties. Powder Technol. 2013; 245: 40–7.
  • 33. Siddiqua A., Hahladakis J.N., Al-Attiya W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ Sci Pollut Res. 2022; 29(39): 58514–36.
  • 34. Tushar Uddin M., Abdur Razzaq M., Hai Quadery A., Jaman Chowdhury M., Al-Mizan, Moshrur Raihan M., Ahmad F. Extraction of dye from natural source (LAC) & its application on leather. Am Sci Res J Eng. 2017; 34(1): 1–7.
  • 35. Park J.S., Kim S.H., Kim Y.S., Kwon E., Lim H.J., Han K.M., Choi Y.K., Jung C.W., Kang B.C. Non-clinical safety evaluation of food colorant lac dye via systematic toxicity profiling with assessment of in vivo antigenic potential. Front Pharmacol. 2022; 13.
  • 36. Singh A.K., Ghosal S., Sinha N.K., Kumar N. Utilization of lac factory waste for integrated nutrient management in brinjal and its effect on soil fertility. Multilogic Sci. 2018; 8(Special Issue (E)): 246–9.
  • 37. Kimothi S.P., Panwar S., Khulbe A. Creating wealth from agricultural waste. S.P. Kimothi, Panwar S., Khulbe A., editors. Indian council of agricultural research, New Delhi. 2020; 0–172.
  • 38. Fazliyana A., Hamzah A., Hamzah M.H., Man H.C., Jamali N.S., Siajam S.I., Ismail M.H. Recent updates on the conversion of pineapple waste (Ananas comosus) to Value-added products, future perspectives and challenges. Agronomy. 2021; (11): 2221.
  • 39. Su C., Gong J.S., Qin J., He J.M., Zhou Z.C., Jiang M., Xu Z.H., Shi J.S. Glutathione enables full utilization of wool wastes for keratin production and wastewater decolorization. J Clean Prod. 2020; 270.
  • 40. The Council of Fashion Designers of America. FIBER GUIDE: SILK. cfda.com. 2021.
  • 41. Thilagavathi G., Muthukumar N., Krishnanan S.N., Senthilram T. Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. J Nat Fibers. 2020; 17(10): 1391–400.
  • 42. Yves O.R., Christian F.B., Akum O.B., Theodore T., Bienvenu K. Physical and mechanical properties of pineapple fibers (leaves, stems and roots) from awae Cameroon for the improvement of composite materials. J Fiber Sci Technol. 2018; 76(12): 378–86.
  • 43. Jain J., Sinha S. Potential of pineapple leaf fibers and their modifications for development of tile composites. J Nat Fibers. 2022; 19(13): 4822–34.
  • 44. Khan G.M.A., Sarkar M.A., Islam M.M., Alam M.S. Wet processing of agro-residual fibres for potential application in fancy décor items. Adv Mater Process Technol. 2022; 8(3): 3215–30.
  • 45. Xu S., Xiong C., Tan W., Zhang Y. Microstructural, thermal, and tensile characterization of banana pseudo-stem fibers obtained with mechanical, chemical, and enzyme extraction. BioResources. 2015; 10(2): 3724–35.
  • 46. Silva F.S., Ribeiro C.E.G., Demartini T.J. da C., Rodríguez R.J.S. Physical, chemical, mechanical, and microstructural characterization of banana pseudostem fibers from musa sapientum. Macromol Symp. 2020; 394(1).
  • 47. Pandit P. Characteristics & Properties of Banana Fibers. Textile Value Chain. 2020; 4.
  • 48. Patel B.Y., Patel H.K. Retting of banana pseudostem fibre using Bacillus strains to get excellent mechanical properties as biomaterial in textile & fiber industry. Heliyon. 2022; 8(9).
  • 49. Dessalegn Y., Singh B., Vuure A.W. va., Badruddin I.A., Beri H., Hussien M., Ahmed G.M.S., Hossain N. Investigation of bamboo fibrous tensile strength using modified weibull distribution. Materials (Basel). 2022; 15(14).
  • 50. Gao X., Zhu D., Fan S., Rahman M.Z., Guo S., Chen F. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: a review. J Mater Res Technol. 2022; 19: 1162–90.
  • 51. Kumar K.N., Babu P.D., Surakasi R., Kumar P.M., Ashokkumar P., Khan R., Alfozan A., Gebreyohannes D.T. Mechanical and thermal properties of bamboo fiber-reinforced PLA polymer composites: A critical study. Genet Res (Camb). 2022; 2022.
  • 52. Rini D.S., Ishiguri F., Nezu I., Ngadianto A., Irawati D., Otani N., Ohshima J., Yokota S. Geographic and longitudinal variations of anatomical characteristics and mechanical properties in three bamboo species naturally grown in Lombok Island, Indonesia. Sci Rep. 2023; 13(1): 2265.
  • 53. De Carvalho Mendes C.A., De Oliveira Adnet F.A., Leite M.C.A.M., Furtado C.R.G., De Sousa A.M.F. Chemical, physical, mechanical, thermal and morphological characterization of corn husk residue. Cellul Chem Technol. 2015; 49(9–10): 727–35.
  • 54. Sari N.H., Wardana I.N.G., Irawan Y.S., Siswanto E. Physical and acoustical properties of corn husk fiber panels. Adv Acoust Vib. 2016; 2016.
  • 55. Ibrahim M.I.J., Sapuan S.M., Zainudin E.S., Zuhri M.Y.M. Preparation and characterization of cornhusk/sugar palm fiber reinforced Cornstarch-based hybrid composites. J Mater Res Technol. 2020; 9(1): 200–11.
  • 56. Anwar S.I. Determination of moisture content of bagasse of jaggery unit using microwave oven. J Eng Sci Technol. 2010; 5(4): 472–8.
  • 57. Yadav S., Gupta G.K., Kumar R. A Review on composition and properties of bagasse fibers. In: International Journal of Scientific and Engineering Research. 2015; 143–8.
  • 58. Jayamaui E., Rahman M.R., Benhur D.A., Bakri M.K. Bin, Kakair A., Khan A. Comparative study of fly ash/sugarcane fiber reinforced polymer composites properties. BioResources. 2020; 15(3): 5514–31.
  • 59. Yang Y., Reddy N. Properties and potential medical applications of regenerated casein fibers crosslinked with citric acid. Int J Biol Macromol. 2012; 51(1–2): 37–44.
  • 60. Thill S., Schmidt T., Wöll D., Gebhardt R. A regenerated fiber from rennet-treated casein micelles. Colloid Polym Sci. 2021; 299(5): 909–14.
  • 61. Fematt‐flores G.E., Aguiló‐aguayo I., Marcos B., Camargo‐olivas B.A., Sánchez‐vega R., Soto‐caballero M.C., Salas‐salazar N.A., Flores‐córdova M.A., Rodríguez‐roque M.J. Milk protein‐based edible films: Influence on mechanical, hydrodynamic, optical and antioxidant properties. Coatings. 2022; 12(2).
  • 62. Reddy N., Yang Y. Structure and properties of chicken feather barbs as natural protein fibers. J Polym Environ. 2007; 15(2): 81–7.
  • 63. Choudary R.B., Prasad A.S., Bhargava N.R.M.R. Feather fiber reinforced polyester composites. Mater Sci Res India. 2007; 4(2): 487–92.
  • 64. Zhan M., Wool R.P. Mechanical properties of chicken feather fibers. Polym Compos. 2011; 32(6): 937–44.
  • 65. Tesfaye T., Sithole B., Ramjugernath D., Chunilall V. Valorisation of chicken feathers: Characterisation of chemical properties. Waste Manag. 2017; 68: 626–35.
  • 66. Mann G.S., Azum N., Khan A., Rub M.A., Hassan M.I., Fatima K., Asiri A.M. Green composites based on animal fiber and their applications for a sustainable future. Polymers (Basel). 2023; 15(3): 601.
  • 67. Chong E.J., Phan T.T., Lim I.J., Zhang Y.Z., Bay B.H., Ramakrishna S., Lim C.T. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007; 3(3 SPEC. ISS.): 321–30.
  • 68. Fukae R., Midorikawa T. Preparation of gelatin fiber by gel spinning and its mechanical properties. J Appl Polym Sci. 2008; 110(6): 4011–5.
  • 69. Khan R.A., Khan M.A., Sarker B., Saha S., Das A.K., Noor N., Huq T., Khan A., Dey K., Saha M. Fabrication and characterization of gelatin fiber-based linear low-density polyethylene foamed composite. J Reinf Plast Compos. 2010; 29(16): 2438–49.
  • 70. Chaochai T., Imai Y., Furuike T., Tamura H. Preparation and properties of gelatin fibers fabricated by dry spinning. Fibers. 2016; 4(1).
  • 71. Czaplicki Z. Properties and structure of polish alpaca wool. Fibres Text East Eur. 2012; 90(1): 8–12.
  • 72. Jankowska D., Wyrostek A., Patkowska–Sokoła B., Czyż K. Comparison of physico-mechanical properties of fibre and yarn made of alpaca, sheep, and goat wool. J Nat Fibers. 2019.
  • 73. Cheung H.Y., Lau K.T., Ho M.P., Mosallam A. Study on the mechanical properties of different silkworm silk fibers. J Compos Mater. 2009; 43(22): 2521–31.
  • 74. Asim M., Abdan K., Jawaid M., Nasir M., Dashtizadeh Z., Ishak M.R., Hoque M.E., Deng Y. A review on pineapple leaves fibre and its composites. Int J Polym Sci. 2015; 2015: 6.
  • 75. Chokshi S., Parmar V., Gohil P., Chaudhary V. Chemical composition and mechanical properties of natural fibers. J Nat Fibers. 2022; 19(10): 3942–53.
  • 76. Adeoye M.D., Lawal A.T., Jimoh A.O., Adelani A.K., Ojo O.O., Ndukwe N.A., Salaudeen T., Adewuyi S. Fascinating physical-chemical properties and fiber morphology of selected waste plant leaves as potential pulp and paper making agents. Biomass Convers Biorefinery. 2021; 11(6): 3061–70.
  • 77. Zhang M., Liu Q., Twebaze C.B., Zhuang X., Kimani M., Zheng G., Wang Z., Zhao J., Zhu R., Wang R. The effect of activated water degumming technique on alkali-pretreated banana fiber. BioResources. 2022; 17(4): 6775–88.
  • 78. Bourmaud A., Beaugrand J., Shah D.U., Placet V., Baley C. Towards the design of high-performance plant fibre composites. Prog Mater Sci. 2018; 97: 347–408.
  • 79. Martijanti M., Juwono A.L., Sutarno S. Investigation of characteristics of bamboo fiber for composite structures. In: IOP Conference Series: Materials Science and Engineering. 2020.
  • 80. Aziz A.A., Ismail S., Mahayuddin S.A. A review of the factors affecting the properties of bamboo fiber bio-composite materials. Malaysian J Sustain Environ. 2023; 10(1): 275–98.
  • 81. Duong N.T., Satomi T., Takahashi H. Potential of corn husk fiber for reinforcing cemented soil with high water content. Constr Build Mater. 2021; 271.
  • 82. Prasad L., Kumar S., Patel R.V., Yadav A., Kumar V., Winczek J. Physical and mechanical behaviour of sugarcane bagasse fibre-reinforced epoxy biocomposites. Materials (Basel). 2020; 13(23): 1–13.
  • 83. Pavan M., Samant L. Regenerated milk fiber: An approach towards green textiles. Just Agriculture e-Newsletter. 2022; 3(4): 6.
  • 84. Li Z., Reimer C., Picard M., Mohanty A.K., Misra M. Characterization of chicken feather biocarbon for use in sustainable biocomposites. Front Mater. 2020; 7.
  • 85. Mwanza E.P., van der Westhuizen W.A., Boucher C.E., Charimba G., Hugo C. Heterologous expression and characterisation of a keratinase produced by Chryseobacterium carnipullorum. Protein Expr Purif. 2021; 186.
  • 86. Roy A.N., Samanta K.K., Patra K. Physico-chemical properties of black yak fibre and its modification for blending with jute fibre. J Nat Fibers. 2019; 16(2): 225–36.
  • 87. Atav R., Ergünay U., Gürkan Ünal P. Determining the effect of pigmentation on some physical and mechanical properties of yak and cashmere down fibers. J Nat Fibers. 2022.
  • 88. GMIA. Gelatin Handbook. 2012; 1–25.
  • 89. Hegazy E.M., El-Sayed Khamis N.H. Effect of fresh garlic and ginger on the shelf-life of Gelatin waste used for improvement of plant growth. World Appl Sci J. 2014; 30(1): 83–8.
  • 90. Ulfa M., Trisunaryanti W., Falah I.I., Kartini I., Sutarno S. Synthesis of mesoporous carbon using gelatin as source of carbon by hard template technique and its characterizations. IOSR J Appl Chem. 2014; 7(5): 1–7.
  • 91. Kiron M.I. Chemical composition of natural fibers (cotton, jute, flax, hemp, ramie, sisal, coir, wool and silk). Testile Learner. 2022.
  • 92. Parlato M.C.M., Valenti F., Midolo G., Porto S.M.C. Livestock wastes sustainable use and management: Assessment of raw sheep wool reuse and valorization. Energies. 2022; 15(9).
  • 93. Lancashire R.J. Unit - chemistry of garments: Animal fibres. Chem Mona. 2016.
  • 94. Kumar P., Ram C.S., Srivastava J.P., Behura A.K., Kumar A. Synthesis of cotton fiber and its structure. In: Natural and Synthetic Fiber Reinforced Composites. 2022; 17–36.
  • 95. Jain V., Mittal M., Chaudhary R. Design optimization and analysis of car bumper with the implementation of hybrid biocomposite material. IOP Conf Ser Mater Sci Eng. 2020; 804(1).
  • 96. Food and Agriculture Organization. Crops and livestock products [cited 2023 Dec 31]. Available from: https://www.fao.org/faostat/en/#data/QCL/visualize
  • 97. Łukaszewicz A. Modelling of solid part using multibody techniques in parametric CAD systems. Solid State Phenom. 2009; 147–149: 924–9.
  • 98. Grzejda R. Modelling nonlinear multi-bolted connections: A case of the assembly condition. Eng Rural Dev. 2016; 2016-Janua: 329–35.
  • 99. Grzejda R. Modelling nonlinear multi-bolted connections: A case of operational condition. Eng Rural Dev. 2016; 2016-Janua: 336–41.
  • 100. Grzejda R. New method of modelling nonlinear multibolted systems. Adv Mech Theor Comput Interdiscip Issues - 3rd Polish Congr Mech PCM 2015 21st Int Conf Comput Methods Mech C 2015. 2016; 213–6.
  • 101. Mikołajczyk T., Mikołajewski D., Kłodowski A., Łukaszewicz A., Mikołajewska E., Paczkowski T., Macko M., Skornia M. Energy sources of mobile robot power systems: A Systematic Review and Comparison of Efficiency. Appl Sci. 2023; 13(13): 7547.
  • 102. Grodzki W., Łukaszewicz A. Design and manufacture of umanned aerial vehicles (UAV) wing structure using composite materials. Materwiss Werksttech. 2015; 46(3): 269–78.
  • 103. Šančić T., Brčić M., Kotarski D., Łukaszewicz A. Experimental characterization of composite-printed materials for the production of multirotor UAV airframe parts. Materials (Basel). 2023; 16(14).
  • 104. Sayeed M.M.A., Sayem A.S.M., Haider J., Akter S., Habib M.M., Rahman H., Shahinur S. Assessing mechanical properties of jute, kenaf, and pineapple leaf fiber-reinforced polypropylene composites: Experiment and modelling. Polymers (Basel). 2023; 15(4).
  • 105. Afkari A.S., Pratama R.A., Juwono A.L., Roseno S. Mechanical properties of pineapple leaf fiber/epoxy composites with 0°/0°/0°/0° and 0°/90°/0°/90° fiber orientations. Indones J Mater Sci [Internet].2022;23:83–9. Available from: https://inis.iaea.org/search/search.aspx?orig_q=RN:53113422
  • 106. Jose S., Shanumon P.S., Paul A., Mathew J., Thomas S. Physico-mechanical, thermal, morphological, and aging characteristics of green hybrid composites prepared from wool-sisal and wool-palf with natural rubber. Polymers (Basel). 2022; 14(22).
  • 107. Suteja J., Firmanto H., Soesanti A., Christian C. Properties investigation of 3D printed continuous pineapple leaf fiber-reinforced PLA composite. J Thermoplast Compos Mater. 2022; 35(11): 2052–61.
  • 108. Anand P.B., Lakshmikanthan A., Chandrashekarappa M.P.G., Selvan C.P., Pimenov D.Y., Giasin K. Experimental investigation of effect of fiber length on mechanical, wear, and morphological behavior of silane-treated pineapple leaf fiber reinforced polymer composites. Fibers. 2022; 10(7).
  • 109. Galatas A., Hassanin H., Zweiri Y., Seneviratne L. Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers (Basel). 2018; 10(11).
  • 110. Balakrishnan T.S., Sultan M.T.H., Shahar F.S., Basri A.A., Shah A.U.M., Sebaey T.A., Łukaszewicz A., Józwik J., Grzejda R. Fatigue and impact properties of kenaf/glass-reinforced hybrid pultruded composites for structural applications. Materials (Basel). 2024; 17(2).
  • 111. Mahjoub R., Yatim J.M., Mohd Sam A.R., Hashemi S.H. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Constr Build Mater. 2014; 55: 103–13.
  • 112. Das S., Rahman M., Hasan M. Physico-mechanical properties of pineapple leaf and banana fiber reinforced hybrid polypropylene composites: Effect of fiber ratio and sodium hydroxide treatment. IOP Conf Ser Mater Sci Eng. 2018; 438(1).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7140a9cb-8b95-48a9-b17d-a6a9c3b21f35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.