Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 32, No. 3 | art. no. e151987
Tytuł artykułu

Comparison of PMMA layers doped with methyl red and CdSe quantum dots for application in fibre optic

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a study of the luminescence properties in the visible spectral range of poly(methyl methacrylate) (PMMA) doped with organic dye-methyl red and CdSe quantum dots. The emission spectra of polymer-doped composite structures were investigated and compared with pure PMMA. Optical characterisation was carried out, focused on the measurement and analysis of excitation and luminescence spectra. Comparison of the spectroscopic characteristics of the developed materials allowed comparing the effect of doping on the luminescence properties of the obtained materials and considering their potential application as luminescent materials in fibre optic sensors.
Słowa kluczowe
Wydawca

Rocznik
Strony
art. no. e151987
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr., fot.
Twórcy
autor
  • Laboratory of Optical Fibres Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin,pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland
  • Laboratory of Optical Fibres Technology, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin,pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland
Bibliografia
  • [1] Soffer, B. H. & McFarland, B. B. Continuously tunable, narrow-band organic dye lasers. Appl. Phys. Lett. 10, 266-267 (1967). https://doi.org/10.1063/1.1754804.
  • [2] Slooff, L. H. et al. Optical properties of lissamine functionalized Nd3+ complexes in polymer waveguides and solution. Opt. Mater. 14, 101-107 (2000). https://doi.org/10.1016/S0925-3467(99)00119-6.
  • [3] Pope, M. Kallmann, H. P. & Magnante, P. Electroluminescence in organic crystals. J. Chem. Phys. 38, 2042-2043 (1963). https://doi.org/10.1063/1.1733929.
  • [4] Gil-Kowalczyk, M., Łyszczek, R., Jusza, A. & Piramidowicz, R. Thermal, spectroscopy and luminescent characterization of hybrid PMMA/lanthanide complex materials. Materials 14, 3156 (2021). https://doi.org/10.3390/ma14123156.
  • [5] Piramidowicz, R., Jusza, A., Lipińska, L., Gil, M. & Mergo, P. RE3+: LaAlO3 doped luminescent polymer composites. Opt. Mater. 87, 35-41 (2019). https://doi.org/10.1016/j.optmat.2018.06.018.
  • [6] Costela, A., Garcia-Moreno, I. & Sastre, R. Polymeric solid-state dye lasers: recent developments. Phys. Chem. Chem. Phys. 5, 4745-4763 (2003). https://doi.org/10.1039/B307700B.
  • [7] Chénais, S. & Forget, S. Recent advances in solid-state organic lasers. Polym. Int. 61, 390-406 (2012). https://doi.org/10.1002/pi.3173.
  • [8] Han, C.-Y. & Yang, H. Development of colloidal quantum dots for electrically driven light-emitting devices. J. Korean Ceram. Soc. 54, 449-469 (2017). https://doi.org/10.4191/kcers.2017.54.6.03.
  • [9] Antolini, F & Orazi, L. Quantum dots synthesis through direct laser patterning: A review. Front. Chem. 7, 252 (2019). https://doi.org/10.3389/fchem.2019.00252.
  • [10] Żelazowska, E. & Pichniarczyk, P. Powłoki funkcyjne na szkła przemysłowe. Świat Szkła 1 (2015) (in Polish). https://swiat-szkla.pl/article/9772-powloki-funkcyjne-na-szkla-przemyslowe
  • [11] Porębska, K. SiO2-based hydrophobic coatings produced by sol-gel method. Budownictwo i Architektura 12, 257-267 (2013). https://doi.org/10.35784/bud-arch.1980 (in Polish).
  • [12] Haensch, C., Hoeppener, S. & Schubert, U. S. Chemical modification of selfassembled silane based monolayer by surface reactions. Chem. Soc. Rev. 39, 2323-2334 (2010). https://doi.org/10.1039/B920491A.
  • [13] Fuji, M., Fujimori, H., Takei, T., Watanabe, T. & Chikazawa, M. Wettability of glass-bead surface modified by trimethylchlorosilane. J. Phys. Chem. 102, 10498-10504 (1998). https://doi.org/10.1021/jp981983d.
  • [14] Qin, M. et al. Two methods for glass surface modification and their application in protein immobilization. Colloids Surf. B 60, 243-249 (2007). https://doi.org/10.1016/j.colsurfb.2007.06.018.
  • [15] Caseri, W. Nanocomposites of polymers and metals or semicon-ductors: Historical background and optical properties. Macromol. Rapid Commun. 21, 705-722 (2000). https://doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3.
  • [16] Kim, E., Lee, Y., Bang, J., Kim, K. & Choe, S. Synthesis and electrical resistivity of the monodisperse PMMA/Ag hybrid particles. Mater. Chem. Phys. 134, 814-820 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.074.
  • [17] Guirguis, O. W. & Moselhey, M. T. H. Optical study of poly(vinyl alcohol)/hydroxypropyl methylcellulose blends. J. Mater. Sci. 46 5775-5789 (2011). https://doi.org/10.1007/s10853-011-5533-5.
  • [18] Abdelaziz, M. & Ghannam, M. M. Influence of titanium chloride addition on the optical and dielectric properties of PVA films. Phys. Rev. B. Condense Matter. 405, 958-964 (2010). https://doi.org/10.1016/j.physb.2009.10.030.
  • [19] Abdul-Allah, M. H. Study of optical properties of (PMMA) doped by methyl red and methyl blue films. Iraqi J. Phys. 12, 47-51 (2014). https://doi.org/10.30723/ijp.v12i24.320.
  • [20] Hasan, B. A. Effect of doping with (methylene blue and methyl red) on optical properties of Polymethyl Methaete (PMMA). J. Coll. Educ. 5, 449-465 (2005). https://www.iasj.net/iasj/article/53213
  • [21] Han, C.-Y. & Yang, H. Development of colloidal quantum dots for electrically driven light-emitting devices. J. Korean Ceram. Soc. 54, 449-469 (2017). https://doi.org/10.4191/kcers.2017.54.6.03.
  • [22] Chen, L.-C., Tien, C.-H., Tseng, Z.-L., Dong, Y.-S. & Yang, S. Influence of PMMA on all-inorganic halide perovskite CsPbBr3 quantum dots combined with polymer matrix. Materials 12, 985 (2019). https://doi.org/10.3390/ma12060985.
  • [23] Zhang, J.-H., Liu, Q., Chen, Y.-M., Liu, Z.-Q. & Xu, C.-W. Determination of acid dissociation constant of methyl red by multi-peaks gaussian fitting method based on UV-Visible absorption spectrum. Acta Phys.-Chim. Sin. 28, 1030-1036 (2012). https://doi.org/10.3866/PKU.WHXB201203025.
  • [24] Valizadeh, A. et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res. Lett. 7, 480 (2012). https://doi.org/10.1186/1556-276X-7-480.
  • [25] Moriyasu, T., Kinan, A., Baba, Y. & Kumakura, M. Emission spectral change of CdSe/ZnS quantum dots caused by the dilution with organic solvents. J. Lumin. 221, 117089 (2020). https://doi.org/10.1016/j.jlumin.2020.117089.
  • [26] Asokan, S. et al. The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods. Nanotechnology 16, 2000-2011 (2005). https://doi.org/10.1088/0957-4484/16/10/004.
  • [27] Kiczor, A. & Mergo, P. Synthesis of CdSe quantum dots in two solvents of different boiling points for polymer optical fiber technology. Materials 17, 227-240 (2024). https://doi.org/10.3390/ma17010227.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
2. W artykule źle podany jest ORCID Pani Anny Kiczor.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-71077954-d7f9-417d-9b33-9f7a6d7f6989
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.