Czasopismo
2024
|
No. 66 (1)
|
111-138
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The present study aims to understand the impact of submarine groundwater discharge (SGD) on a coastal area with different lithology and degrees of SGD. Sampling campaigns took place in Puck Bay and the Gulf of Gdańsk, southern Baltic Sea encompassing years between 2009 and 2021. The methodological approach combined geophysical characterization of the surface sediments with detailed spatial and temporal (isotope) biogeochemical investigations of pore and surface waters, and was supported by nearshore groundwater and river surveys. Acoustic investigations identified areas of disturbance that may indicate zones of preferential SGD release. The composition of porewater and the differences in the bay's surface waters disclosed SGD as common phenomenon in the study area. Regional SGD was estimated through a radium mass balance. Local estimation of SGD, based on porewater profiles, revealed highest SGD fluxes at the sandy shoreline, but relatively low elemental fluxes. Though SGD was low at the muddy sites corresponding elemental fluxes of nutrients and dissolved carbon exceeded those determined at the sandy sites due to intense diagenesis in the top sediments. SGD appears to be sourced from different freshwater endmembers; however, diagenesis in surface sediments substantially modified the composition of the mixed solutions that are finally discharged to coastal waters. Overall, this study provides a better understanding of the SGD dynamics in the region by a multi-approach and emphasizes the need to understand the processes occurring at the sediment-water interface when estimating SGD.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
111-138
Opis fizyczny
Bibliogr. 119 poz., rys., tab., wykr.
Twórcy
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
- Institute of Oceanology, Polish Academy of Sciences (IO PAN), Sopot, Poland
autor
- Institute of Oceanology, Polish Academy of Sciences (IO PAN), Sopot, Poland
autor
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
- Department of Physical Oceanography and Instrumentation, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
- Marine Geophysics, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
- current address: Ecoandmore Freiburg, Germany
autor
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
- Institute of Environmental Physics, University of Bremen, Bremen, Germany
autor
- Institute of Oceanology, Polish Academy of Sciences (IO PAN), Sopot, Poland
autor
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research (UFZ), Leipzig-Halle, Germany
autor
- Free University Museum for Natural History, Berlin, Germany
autor
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
autor
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany, michael.boettcher@io-warnemuende.de
- Marine Geochemistry, University of Greifswald, Greifswald, Germany
- Interdisciplinary Faculty, University of Rostock, Rostock, Germany
Bibliografia
- 1. Aloisi, G., Wallmann, K., Bollwerk, S., Derkachev, A., Bohrman, G., Suess, E., 2004. The effect of dissolved barium on biogeochemical processes at cold seeps. Geochim. Cosmochim. Ac. 68, 1735-1748.
- 2. Atlas of Polish marine area bottom habitats, 2009. Atlas of Polish marine area bottom habitats. Environmental valorization of marine habitats. Institute of Oceanology PAN, Available at:. https://www.iopan.gda.pl/hm/atlas/Atlas_all.pdf.
- 3. Balzer, W., 1982. On the distribution of iron and manganese at the sediment/water interface: thermodynamic versus kinetic control. Geochim. Cosmochim. Ac. 46, 1153-1161. https://doi.org/10.1016/0016-7037(82)90001-1
- 4. Beck, A.J., Rapaglia, J.P., Cochran, K., Bokuniewicz, H.J., 2007a. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater. Mar. Chem. 106, 419-441. https://doi.org/10.1016/j.marchem.2007.03.008
- 5. Beck, A.J., Tsukamoto, Y., Tovar-Sanchez, T., Huerta-Diaz, M., Bokuniewicz, H.J., Sanudo-Wilhelmy, S.A., 2007b. Importance of geochemical transformations in determining submarine groundwater discharge-derived trace metal and nutrient fluxes. Appl. Geochem. 22, 477-490. https://doi.org/10.1016/j.apgeochem.2006.10.005
- 6. Berner, R.A., 1982. Burial of organic carbon and Pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282 (4), 451-473. https://doi.org/10.2475/ajs.282.4.451
- 7. Berner, R.A., Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic Time: a new theory.
- 8. Geochim. Cosmochim. Ac. 47 (5), 855-862. https://doi.org/10.1016/0016-7037(83)90151-5
- 9. Billerbeck, M., Werner, U., Bosselmann, K., Walpersdorf, E., Huettel, M., 2006. Nutrient release from an exposed intertidal sand flat. Mar. Ecol. Prog. Ser. 316, 35-51.
- 10. Boudreau, B.P., 1997. Diagenetic models and their implementation: Modelling transport and reactions in aquatic sediments. Springer-Verlag, Berlin, Heidelberg, New York, 414 pp.
- 11. Blöschl, G., Bierkens, M.F.P., Chambel, A., Cudennec, C., Destouni, G., Fiori, A., et al., 2019. Twenty-three Unsolved Problems in Hydrology (UPH) — a Community Perspective. Hydrolog. Sci. J. 64, 1141-1158. https://doi.org/10.1080/02626667.2019.1620507
- 12. Böttcher, M.E., Lipka, M., Winde, V., Dellwig, O., Böttcher, E.O., Böttcher, T.M.C., Schmiedinger, I., 2014. Multi-isotope composition of freshwater sources for the southern North and Baltic Sea. In: Proc. 23rd SWIM conference, Husum, 46-49.
- 13. Böttcher, M.E., Schmiedinger, I., 2021. The Impact of Temperature on the Water Isotope (2 H/ 1 H, 17 O/16 O, 18 O/16 O) Fractionation upon Transport through a Low-Density Polyethylene Membrane. Isot. Environ. Healt. S. 57, 183-192. https://doi.org/10.1080/10256016.2020.1845668
- 14. Böttcher, M.E., Mallast, U., Massmann, G., Moosdorf, N., Mueller-Petke, M., Waska, H., 2024. Coastal-Groundwater Interfaces (Submarine Groundwater Discharge). In: Krause, S., Hannah, D.M., Grimm, N. (Eds.), Ecohydrological Interfaces. Wiley & Sons, New York, 123-148.
- 15. Brand, W.A., Coplen, T.B., 2012. Stable isotope deltas: tiny, yet robust signatures in nature. Isotopes Environ. Health Stud. 48, 393-409. https://doi.org/10.1080/10256016.2012.666977
- 16. Brodecka-Goluch, A., Lukawska-Matuszewska, L., Kotarba, M.J., Borkowski, A., Idczak, J., Bolalek, J., 2022. Biogeochemistry of three different shallow gas systems in continental shelf sediments of the South-Eastern Baltic Sea (Gulf of Gdańsk): Carbon cycling, origin of methane and microbial community composition. Chem. Geol. 597, 120799. https://doi.org/10.1016/j.chemgeo.2022.120799
- 17. Burnett, W.C., Bokuniewicz, H., Huettel, M., Moore, W.S., Tamiguchi, M., 2003. Groundwater and porewater inputs to the coastal zone. Biogeochemistry 66, 3-33.
- 18. Burnett, W.C., Aggarwal, P.K., Aureli, A., Bokuniewicz, H., Cable, J.E., Charette, M.A., Kontar, E., Krupa, S., Kulkarni, K.M., Loveless, A., Moore, W.S., Oberdorfer, J.A., Oliveira, J., Ozyurt, N., Povinec, P., Privitera, A.M.G., Rajar, R., Ramessur, R.T., Turner, J.V., 2006. Quantifying Submarine Groundwater Discharge in the Coastal Zone via Multiple Methods. Sci. Total. Environ. 367, 498-543. https://doi.org/10.1016/j.scitotenv.2006.05.009
- 19. Cerdà-Domènech, M., Rodellas, V., Folch, A., Garcia-Orellana, J., 2017. Constraining the temporal variations of Ra isotopes and Rnin the groundwater end-member: Implications for derived SGD estimates. Sci. Total. Environ. 595, 849-857. https://doi.org/10.1016/j.scitotenv.2017.03.005
- 20. Charette, M.A, Buesseler, K., Andrews, J., 2001. Utility of radium isotopes for evaluating the input and transport of groundwater-derived nitrogen to a Cape Cod estuary. Limnol. Oceanogr. 46 (2), 465-470. https://doi.org/10.4319/lo.2001.46.2.0465
- 21. Charette, M.A., Sholkovitz, E.R., Hansel, C.M., 2005. Trace element cycling in a subterranean estuary Part 1. Geochemistry of the permeable sediments. Geochim. Cosmochim. Ac. 69 (8), 2095-2109. https://doi.org/10.1016/j.gca.2004.10.024
- 22. Cho, H-M., Kim, G., 2016. Determining groundwater Ra endmember values for the estimation of the magnitude of submarine groundwater discharge using Ra isotope tracers. Geophys. Res. Let. 43 (8), 3865-3871. https://doi.org/10.1002/2016GL068805
- 23. Church, T., 1996. An underground route for the water cycle. Nature 380, 579 pp.
- 24. Cline, J.D., 1969. Spectrophotometric Determination of Hydrogen Sulfide in Natural Waters. Limnol. Oceanogr. 14, 454-458.
- 25. Cook, P.L.M., Wenzhöfer, F., Glud, R.N., Janssen, F., Huettel, M., 2007. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective porewater exchange. Limnol. Oceanogr. 52, 1943-1963. https://doi.org/10.4319/lo.2007.52.5.1943
- 26. de Beer, D., Wenzhöfer, F., Ferdelman, T.G., Boehme, S.E., Huettel, M., van Beusekom, J.E.E., Böttcher, M.E., Musat, N., Dubilier, N., 2005. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø basin, Wadden Sea. Limnol. Oceanogr. 50 (1), 113-127. https://doi.org/10.4319/lo.2005.50.1.0113
- 27. Deines, P., Langmuir, D., Harmon, R.S., 1974. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate ground waters. Geochim. Cosmochim. Ac. 38, 1147-1164. https://doi.org/10.1016/0016- 7037(74)90010-6
- 28. Dippner, J.W., Bartl, I., Chrysagi, E., Holtermann, P., Kremp, A., Thoms, F., Voss, M., 2019. Lagrangian Residence Time in the Bay of Gda´nsk, Baltic Sea. Front. Mar. Sci. 6, 725. https://doi.org/10.3389/fmars.2019.00725
- 29. Drake, H., Åström, M., Heim, C., Broman, C., Åström, J., White-house, M., Ivarsson, M., Siljeström, S., Sjövall, 2015. Extreme 13C depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nat. Commun. 6, 7020. https://doi.org/10.1038/ncomms8020
- 30. Donis, D., Janssen, F., Liu, B., Wenzhöfer, F., Dellwig, O., Escher, P., Spitzy, A., Böttcher, M.E., 2017. Biogeochemical impact of submarine groundwater discharge on coastal surface sands of the southern Baltic Sea. Estuar. Coast. Shelf Sci. 189, 131-142. https://doi.org/10.1016/j.ecss.2017.03.003
- 31. Egger, M., Hagens, M., Sapart, C.J., Dijkstra, N., van Helmond, N.A.G.M., Mogollón, J., Risgaard-Petersen, N., van der Veen, C., Kasten, S., Riedinger, N., Böttcher, M.E., Röckmann, T., Jørgensen, B.B., Slomp, C.P., 2017. Iron oxide reduction in methane-rich deep Baltic Sea sediments. Geochim. Cosmochim. Ac. 207, 256-276. https://doi.org/10.1016/j.gca.2017.03.019
- 32. Ehlert von Ahn, C.M., Böttcher, M.E., Malik, C., Westphal, J., Rach, B., Nantke, C.K., Jenner, A., Saban, R., Winde, V., Schmiedinger, I., 2023. Spatial and temporal variations in the isotope hydrobiogeochemistry of a managed river draining towards the southern Baltic Sea. Geochemistry 83 (3), 125979. https://doi.org/10.1016/j.chemer.2023.125979
- 33. EEA. European Environment Agency. Data and Maps. EEA coastline. available at: http://www.eea.europa.eu/data- and- maps/data/eea- coastline- for- analysis- 2/gis- data/eea- coastline- polygon/@@rdf (accessed at 22.10.2022).
- 34. Falkowska, L., Piekarek-Jankowska, H., 1999. Submarine seepage of fresh groundwater: disturbance in hydrological and chemical structure of the water column in the Gdańsk Basin. ICES J Mar. Sci. 56, 153-160. https://doi.org/10.1016/j.jmarsys.2013.06.009
- 35. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Ac. 43, 1075e1090. https://doi.org/10.1016/0016-7037(79)90095-4
- 36. Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., Dulaiova, H., 2008. Uncertainties Associated with 223 Ra and 224 Ra Measurements in Water via a Delayed Coincidence Counter (RaDeCC). Mar. Chem. 109, 198-219. https://doi.org/10.1016/j.marchem.2007.11.006
- 37. Gat, J.R., 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225-262. https://doi.org/10.1146/annurev.earth.24.1.225
- 38. Goyetche, T., Luquot, L., Carrera, J., Martínez-Pérez, L., Folch, A., 2022. Indentification and quantification of chemical reactions in a coastal aquifer to assess submarine groundwater discharge composition. Sci. Total. Environ. 838 (1), 155978. https://doi.org/10.1016/j.scitotenv.2022.155978
- 39. Grasshoff, K., Kremling, K., Ehrhardt, M., 2009. Methods of Seawater Analysis. Wiley & Sons, Weinheim, 600 pp.
- 40. Gupta, P., Noone, D., Galewsky, J., Sweeney, C., Vaughn, B.H., 2009. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun. Mass Sp. 23, 2534-2542. https://doi.org/10.1002/rcm.4100
- 41. HELCOM. River and lake outlines around the Baltic Sea based on 1:1,000,000 scale source maps. available at: https://metadata.helcom.fi/geonetwork/srv/eng/catalog.search#/metadata/f0edff62- d9fa- 4fda- 9b42- da3947ee248a.(accessed at 22.05.2022).
- 42. Hoffmann, J.J.L., von Deimling, J.S., Schröder, J.F., Schmidt, M., Held, P., Crutchley, G.J., Scholten, J., Gorman, A.R., 2020. Complex Eyed pockmarks and submarine groundwater discharge revealed by acoustic data and sediment cores in Eckernförde Bay. SW Baltic Sea. Geochem. Geophy. Geosy. 21, e2019GC008825. https://doi.org/10.1029/2019GC008825
- 43. Hovland, M., Talbot, M., Olaussen, S., Aasberg, L., 1987. Methane related carbonate cements in pockmarks of the North Sea. J. Sediment. Res. 57 (5), 881-892. https://doi.org/10.1306/212f8c92- 2b24- 11d7- 8648000102c1865d
- 44. Huettel, M., Ziebis, W., Forster, S., Luther, W., 1998. Advective transport affecting metal and nutrient distributions and interfacial fluxes in permeable sediments. Geochim. Cosmochim. Ac. 62 (4), 613-631. https://doi.org/10.1016/S0016-7037(97)00371-2
- 45. IMGW, 2022. The data have been processed at the Institute of Meteorology and water management — National Research Institute Poland.
- 46. Idczak, J., Brodeck-Goluch, A., Lukawska-Matuszewska, K., 135 Graca, B., Gorska, N., Klusek, Z., Pezacki, P.D., Bolalek, J., 2020. A geophysical, geochemical and microbiological study of a newly discovered pockmark with active gas seepage and submarine groundwater discharge (MET1-BH, central Gulf of Gdańsk, southern Baltic Sea). Sci. Total. Environ. 742, 140306. https://doi.org/10.1016/j.scitotenv.2020.140306
- 47. Iversen, N., Jørgensen, B.B., 1985. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol. Oceanogr. 30 (5), 944-955. https://doi.org/10.4319/lo.1985.30.5.0944
- 48. Jørgensen, B.B., Böttcher, M.E., Lüschen, H., Neretin, L.N., Volkov, I.I., 2004. Anaerobic methane oxidation and a deep H2 S sink generate isotopically heavy sulfides in Black Sea sediments. Geochim. Cosmochim. Ac. 68 (9), 2095-2118. https://doi.org/10.1016/j.gca.2003.07.017
- 49. Jørgensen, B.B., Kasten, S., 2006. Sulfur cycling and methane oxidation. In: Schulz, H.D., Zabel, M. (Eds.), Marine Geochemistry. Springer-Verlag, Berlin, Heidelberg, 271-309.
- 50. Jurasinski, G., Janssen, M., Voss, M., Böttcher, M.E., Brede, M., Burchard, H., Forster, S., Gosch, L., Gräwe, U., Gründling-Pfaff, S., Haider, F., Ibenthal, M., Karow, N., Karsten, U., Kreuzburg, M., Lange, X., Langer, S., Leinweber, P., Rezanezhad, F., Rehder, G., Romoth, K., Schade, H., Schubert, H., Schulz-Vogt, H., Sokolova, I., Strehse, R., Unger, V., Westphal, J., Lennartz, B., 2018. Understanding the Coastal ecocline: Assessing sea-land-interactions at non-tidal, low-lying coasts through interdisciplinary research. Front. Mar. Sci. 5, 1-22. https://doi.org/10.3389/fmars.2018.00342
- 51. Kłostowska, Z., Szymczycha, B., Kuli´nski, K., Lengier, M., Ł˛eczyński, L., 2018. Hydrochemical characterization of various groundwater and seepage water resources located in the Bay of Puck, Southern Baltic Sea. E3S Web of Conferences 54, 00013. https://doi.org/10.1051/e3sconf/20185400013
- 52. Kłostowska, Z., Szymczycha, B., Lengier, M., Zarzeczanska, D., Dzierzbicka-Glowacka, L., 2019. Hydrogeochemistry and magnitude of SGD in the Bay of Puck, southern Baltic. Oceanologia 62 (1), 1-11. https://doi.org/10.1016/j.oceano.2019.09.001
- 53. Krall, L., Garcia-Orellana, J., Trezzi, G., Rodellas, V., 2017. Submarine Groundwater Discharge at Forsmark, Gulf of Bothnia, provided by Ra Isotopes. Mar. Chem. 162, 162-172.
- 54. Kramarska, R., Uscinowicz, S., Zachowicz, J., Kawinska, M., 1995. Origin and Evolution of the Puck Lagoon. J. Coast. Res. 22, 187-191. https://doi.org/10.1016/j.marchem.2017.09.003
- 55. Kotwicki, L., Grzelak, K., Czub, M., Dellwig, O., Gentz, T., Szymczycha, B., Böttcher, M.E., 2014. Submarine groundwater discharge to the Baltic coastal zone: Impacts on the meiofaunal community. J. Marine Syst. 129, 118-126. https://doi.org/10.1016/j.jmarsys.2013.06.009
- 56. Leipe, T., Moros, M., Kotilainen, A., Vallius, H., Kabel, K., Endler, M., Kowalski, N., 2013. Mercury in Baltic Sea Sediments — Natural Background and Anthropogenic Impact. Geochemistry 73, 249-259. https://doi.org/10.1016/j.chemer.2013.06.005
- 57. Löffler, H., Adam, C., Brinschwitz, D., Gieseler, W., Ginzel, G., Grunske, K.-A., Heeger, D., Meinert, N., Nillert, P., Richter, C., Victor, N., 2010. Hydrochemische Typisierung für Grundwasser im Lockergestein Bereich des norddeutschen Flachlandes. Schriftenreihe für Geowissenschaften 18, 369-399.
- 58. Majewski, A., 1990. The Gulf of Gda´nsk. Wydawnictwo Geologiczne, Warsaw, (in Polish). Massel, S.R., Przyborska, A., Przyborski, M., 2004. Attenuation of wave-induced groundwater pressure in shallow water. Part 1. Oceanologia 46 (3), 383-404.
- 59. Matciak, M., Nowacki, J., Krzyminski, W., 2011. Upwelling intrusion into shallow Puck Lagoon, a part of Puck Bay (the Baltic Sea). Oceanol. Hydrobiol. St. 40, 2. https://doi.org/10.2478/s13545-011-0021-8
- 60. Matciak, M., Bieleninik, S., Botur, A., Podgórski, M., Trzcinska, K., Draganska, K., Jasniewicz, D., Kurszewska, A., Wenta, M., 2015. Observations of presumable groundwater seepage occurrence in Puck Bay (the Baltic Sea). Oceanol. Hydrobiol. St. 44 (2), 267-272. https://doi.org/10.1515/ohs-2015-0025
- 61. Mayfield, K.K., Eisenhauer, A., Ramos, D.P.S., Higgins, J.A., Horner, T.J., Auro, M., Magna, T., Moosdorf, N., Charette, M.A., Gonneea, M.E., Brady, C.E., Komar, N., Peucker-Ehrenbrink, B., Paytan, A., 2021. Groundwater discharge impacts marine isotope budgets of Li, Mg, Ca, Sr, and Ba. Nat. Commun. 12, 148. https://doi.org/10.1038/s41467-020-20248-3
- 62. Meister, P., Liu, B., Khalili, A., Böttcher, M.E., Jørgensen, B.B., 2019. Factors controlling the carbon isotope composition of dissolved inorganic carbon and methane in marine porewater: An evaluation by reaction transport modelling. J. Marine Syst. 200, 103227. https://doi.org/10.1016/j.jmarsys.2019.103227
- 63. Moore, W.S., 1996. Large groundwater inputs to coastal waters revealed by 226 Ra enrichments. Nature 380, 612-614. https://doi.org/10.1038/380612a0
- 64. Moore, W.S., Arnold, R., 1996. Measurement of 223 Ra and 224 Rain Coastal Waters Using a Delayed Coincidence Counter. J. Geophys. Res. 101, 1321-1329. https://doi.org/10.1029/95JC03139
- 65. Moore, W.S., 1999. The subterranean estuary: a reaction zone of ground water and sea water. Mar. Chem. 65, 111-125. https://doi.org/10.1016/S0304-4203(99)00014-6
- 66. Moore, W.S., 2000a. Determining coastal mixing rates using radium isotopes. Cont. Shelf Res. 20, 1993—2007. https://doi.org/10.1016/S0278-4343(00)00054-6
- 67. Moore, W.S., 2000b. Ages of continental shelf waters determined from 223 Ra and 224 Ra. J. Geophys. Res. 105, 22117-22122. https://doi.org/10.1029/1999JC000289
- 68. Moore, W.S., 2006. Radium isotopes as tracers of submarine ground-water discharge in Sicily. Cont. Shelf. Res. 26, 852-861. https://doi.org/10.1016/j.csr.2005.12.004
- 69. Moore, W.S., 2010. The effect of submarine groundwater discharge on the Ocean. Annu. Rev. Mar. Sci. 2, 59-88. https://doi.org/10.1146/annurev- marine- 120308- 081019
- 70. Moore, W.S., Beck, M., Riedel, T., Rutgers van der Loeff, M., Dellwig, O., Shaw, T.J., Schnetger, B., Brumsack, H.-J., 2011. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: A decade of studies in the German Wadden Sea. Geochim. Cosmochim. Ac. 75, 6535-6555. https://doi.org/10.1016/j.gca.2011.08.037
- 71. Moosdorf, N., Böttcher, M.E., Adyasari, D., Erkul, E., Gilfedder, B.S., Greskowiak, J., Jenner, A-K., Kotwicki, L., Massmann, G., Müller-Petke, M., Oehler, T., Post, V., Prien, R., Scholten, J., Siemon, B., Ehlert von Ahn, C.M., Walther, M., Waska, H., Wunderlich, T., Mallast, U., 2021. A State-Of-The-Art Perspective on the Characterization of Subterranean Estuaries at the Regional Scale. Front. Earth Sci. 9, 601293, 1-26. https://doi.org/10.3389/feart.2021.601293
- 72. Morse, J.W., Berner, R.A., 1995. What determines sedimentary C/S ratios? Geochim. Cosmochim. Ac. 59 (6), 1073-1077. https://doi.org/10.1016/0016-7037(95)00024-T
- 73. Oberdorfer, J.A., Charette, M., Allen, M., Martin, J.B., Cable, J.E., 2008. Hydrogeology and geochemistry of near-shore submarine groundwater discharge at Flamendo Bay, Ubatuba, Brazil. Estuar. Coast. Shelf Sci. 76, 457-465. https://doi.org/10.1016/j.ecss.2007.07.020
- 74. Paytan, A., Shellenbarger, G.G., Street, J.J., Davis, K., Young, M.B., Moore, W.S., 2006. Submarine groundwater discharge: An important source of new inorganic nitrogen to coral reef ecosystems. Limnol. Oceanogr. 51 (1), 343-348. https://doi.org/10.4319/lo.2006.51.1.0343
- 75. Peltonen, K., 2002. Direct Groundwater Inflow to the Baltic Sea. TemaNord, Nordic Councils of Ministers, Copenhagen, the Netherlands, 79 pp. Oceanologia 66 (2024) 111-138
- 76. Piekarek-Jankowska, H., 1994. Zatoka Pucka jako Obszar Drenażu Wód Podziemnych. Rozp. Monogr., Wyd. UG, Gdańsk 31-32, 204.
- 77. Piekarek-Jankowska, H., 1996. Hydrochemical effects of submarine groundwater discharge to the Puck Bay (Southern Baltic Sea, Poland). Geographia Polonica 67.
- 78. Povinec, P.P., Bokuniewicz, H., Burnett, W.C., Cable, J., Charette, M., Comanducci, J-F., Kontar, E.A., Moore, W.S., Oberdorfer, J.A., de Oliveira, J., Peterson, R., Stieglitz, T., Taniguchi, M., 2008. Isotope tracing of submarine groundwater discharge offshore Ubatuba, Brazil: results of the IAEA-Unesco SGD project. J. Environ. Radioactiv. 99, 1596-1610. https://doi.org/10.1016/j.jenvrad.2008.06.010
- 79. Purkamo, L., von Ahn, C.M.E., Jilbert, T., Muniruzzaman, M., Bange, H.W., Jenner, A-K., Böttcher, M.E., Virtasalo, J.J., 2022. Impact of submarine groundwater discharge on biogeochemistry and microbial communities in pockmarks. Geochim. Cosmochim. Ac. 334, 14-44. https://doi.org/10.1016/j.gca.2022.06.040
- 80. Purkl, S., Eisenhauer, A., 2004. Determination of radium isotopes and 222 Rn in a groundwater affected coastal area of the Baltic Sea and the underlying sub-sea floor aquifer. Mar. Chem. 87, 137-149. https://doi.org/10.1016/j.marchem.2004.02.005
- 81. Qian, Q., Clark, J.J., Voller, V.R., Stefan, H.G., 2009. Depth-dependent dispersion coefficient for modeling of vertical solute exchange in a lake bed under surface waves. J. Hydraul. Eng. 135 (3), 187-197. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(187)
- 82. R Core Team. R: a language and environment for statistical computing. In: R Foundation for Statistical Computing. Austria, Vienna.
- 83. Racasa, E.D., Lennartz, B., Toro, M., Janssen, M., 2021. Submarine Groundwater Discharge From Non- Tidal Coastal Peatlands Along the Baltic Sea. Front. Earth. Sci. 9, 665802. https://doi.org/10.3389/feart.2021.665802
- 84. Rodellas, V., Garcia-Orellana, J., Garcia-Solsona, E., Masque, P., Dominguez, J.A., Ballesteros, B.J., Mejias, M., Zarroca, M., 2012. Quantifying groundwater discharge from different sources into a Mediterranean wetland by using 222 Rn and Ra isotopes. J. Hydrol. 466-467, 11-22. https://doi.org/10.1016/j.jhydrol.2012.07.005
- 85. Rodellas, V., Garcia-Orellana, J., Trezzi, G., Masque, P., Stieglitz, T.C., Bokuniewicz, H., Cochran, J.K., Berdalet, E., 2017. Using the radium quartet to quantify submarine groundwater discharge and porewater exchange. Geochim. Cosmochim. Ac. 196, 58-73. https://doi.org/10.1016/j.gca.2016.09.016
- 86. Sadat-Noori, M., Maher, D.T., Santos, I.R., 2016. Groundwater Discharge as a Source of Dissolved Carbon and Greenhouse Gases in a Subtropical Estuary. Estuar. Coast. 36, 639-656. https://doi.org/10.1007/s12237-015-0042-4
- 87. Santos, I.R., Eyr, B.D., Huette, M., 2012. The driving forces of pore-water and groundwater flow in permeable coastal sediments: A review. Estuar. Coast. Shelf Sci. 98, 1-15. https://doi.org/10.1016/j.ecss.2011.10.024
- 88. Santos, I.R., Chen, X., Lecher, A.L., Sawyer, A.H., Moosdorf, N., Rodellas, V., Tamborski, J., Cho, H-M., Dimova, N., Sugimoto, R., Bonaglia, S., Li, H., Hajati, M-C., Li, L., 2021. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat. Rev. Earth Environ. 2, 307-323. https://doi.org/10.1038/s43017-021-00152-0
- 89. Schlitzer, R., 2001. Ocean Data View available at:. http://www.awi-bremerhaven.de/GEO/ODV.
- 90. Schlüter, M., Sauter, E., Andersen, C.E., Dahlgaard, H., Dando, P.R., 2004. Spatial Distribution and Budget for Submarine Groundwater Discharge in Eckernförde Bay (Western Baltic Sea). Limnol. Oceanogr. 49, 157-167. https://doi.org/10.4319/lo.2004.49.1.0157
- 91. Seeberg-Elverfeldt, J., Schlüter, M., Feseker, T., Kölling, M., 2005. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol. Oceanogr.-Meth. 3, 361-371. https://doi.org/10.4319/lom.2005.3.361
- 92. Slomp, C., Van Cappellen, P., 2004. Nutrients inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J. Hydrol. 295, 64-86. https://doi.org/10.1016/j.jhydrol.2004.02.018
- 93. Soetaert, K., Meysman, F., 2012. Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software R. Environ. Modell. Softw. 32, 49-60. https://doi.org/10.1016/j.envsoft.2011.08.011
- 94. Strady, E., Pohl, C., Yakushev, E.V., Krüger, S., Hennings, U., 2008. Pump-CTD-System for trace metal sampling with a high vertical resolution. A test in the Gotland Basin, Baltic Sea. Chemosphere 70, 1309-1319. https://doi.org/10.1016/j.chemosphere.2007.07.051
- 95. Sültenfuß, J., Rhein, M., Roether, W., 2009. The Bremen mass spectrometric facility for the measurement of helium isotopes, neon and tritium in water. Isot. Environ. Health. S. 45 (2), 1-13. https://doi.org/10.1080/10256010902871929
- 96. Szymczak, E., Piekarek-Jankowska, H., 2007. The transport and distribution of the river load from the Reda River into the Puck Lagoon (southern Baltic Sea, Poland). Oceanol. Hydrobiol. St. XXXVI, 103-124. https://doi.org/10.2478/v10009-007-0012-7
- 97. Szymczak, E., Szmytkiewicz, A., 2014. Sediment deposition in the Puck Lagoon (Southern Baltic Sea, Poland). BALTICA 27, 105-118. https://doi.org/10.5200/baltica.2014.27.20
- 98. Szymczycha, B., Böttcher, M.E., Diak, M., Koziorowska-Makuch, K., Kuliński, K., Makuch, P., von Ahn, C.M.E., Winogradow, A., 2023. The benthic-pelagic coupling affects the surface water carbonate system above groundwater-charged coastal sediments. Front. Mar. Sci. 10, 1218245. https://doi.org/10.3389/fmars.2023.1218245
- 99. Szymczycha, B., Klostowska, Z., Lengier, M., Dzierzbicka-Glowacka, L., 2020. Significance of nutrients fluxes via submarine groundwater discharge in the Bay of Puck, southern Baltic Sea. Oceanologia 62 (2), 117-125. https://doi.org/10.1016/j.oceano.2019.12.004
- 100. Szymczycha, B., Vogler, S., Pempkowiak, J., 2012. Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, southern Baltic Sea. Sci. Total. Environ. 438, 86-93. https://doi.org/10.1016/j.scitotenv.2012.08.058
- 101. Szymczycha, B., Kroeger, K.D., Pempkowiak, J., 2016. Significance of groundwater discharge along the coast of Poland as a source of dissolved metals to the southern Baltic Sea. Mar. Pollut. Bull. 109, 151-162. https://doi.org/10.1016/j.marpolbul.2016.06.008
- 102. Szymczak-Zyla, M., Lubecki, L., 2022. Biogenic and anthropogenic sources of sedimentary organic matter in marine coastal areas. A multi-proxy approach based on bulk and molecular markers. Mar. Chem. 239, 104069. https://doi.org/10.1016/j.marchem.2021.104069
- 103. Stosch, H.-G., 2022. Excel template to plot hydrochemical data into a Piper diagram (1.0). Zenodo. doi:10.5281/zenodo.5994293.
- 104. Tamborski, J., Bejannin, S., Garcia-Orellana, J., Souhaut, M., Charbonnier, C., Anschutz, P., Pujo-Pay, M., Conan, P., Crispi, O., Monnin, C., Stieglitz, T., Rodellas, V., Andriosa, A., Claude, C., van Beek, P., 2018. A comparison between water circulation and terrestrially-driven dissolved silica fluxes to the Mediterranean Sea traced using radium isotopes. Geochim. Cosmochim. Ac. 238, 496-515. https://doi.org/10.1016/j.gca.2018.07.022
- 105. Tamisier, M., Schmidt, M., Vogt, C., Kümmel, S., Stryhanyuk, H., Musat, N., Richnow, H.-H., Musat, F., 2022. Iron corrosion by methanogenic archaea characterized by stable isotope effects and crust mineralogy. Environ. Microbiol. 24 (2), 583-595. https://doi.org/10.1111/1462-2920.15658
- 106. Taniguchi, M., Burnett, W.C., Cable, J.E., Turner, J.V., 2002. Investigation of submarine groundwater discharge. Hydrol. Proc. 16, 2115-2129. https://doi.org/10.1002/hyp.1145
- 107. Taniguchi, M., Dulaim, H., Burnett, K.M., Santos, I.R., Sugimoto, R., Stieglitz, T., Kim, G., Moosdorf, N., Burnett, W., 2019. Submarine Groundwater Discharge Updates on its Measurement Techniques, Geophysical Drivers, Magnitudes, and Effects. Front. Environ. Sci. 7, 141. https://doi.org/10.3389/fenvs.2019.00141
- 108. Top, Z., Brand, L.E., Corbett, R.D., Burnett, W., Chanton, J., 2001. Helium and radon as tracers of groundwater input into Florida Bay. J. Coast. Res. 17 (4), 859-868. http://www.jstor.org/stable/4300245.
- 109. Thang, N.M., Brüchert, V., Formolo, M., Wegener, G., Ginters, L., Jørgensen, B.B., Ferdelman, T.G., 2013. The Impact of Sediment and Carbon Fluxes on the Biogeochemistry of Methane and Sulfur in Littoral Baltic Sea Sediments (Himmerfjärden, Sweden). Estuar. Coast. 36, 98-115. https://doi.org/10.1007/s12237-012-9557-0
- 110. Van den Berg, C.M.G., Rogers, H., 1987. Determination of alkalinities of estuarine waters by a two-point potentiometric titration. Mar. Chem. 20, 219-226. https://doi.org/10.1016/0304-4203(87)90073-9
- 111. Virtasalo, J.J., Schroeder, J.F., Luoma, S., Majaniemi, J., Mursu, J., Scholten, J., 2019. Submarine Groundwater Discharge Sitein the First Salpausselkä Ice-Marginal Formation, South Finland. Solid Earth-EGU 10, 405-432. https://doi.org/10.5194/se-10-405-2019
- 112. Viventsowa, E.E., Voronov, A.N., 2003. Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects. Environ. Geol. 45, 221-225. https://doi.org/10.1007/s00254-003-0869-z
- 113. von Ahn, C.M.E., Scholten, J.C., Malik, C., Feldens, P., Liu, B., Dellwig, O., Jenner, A-K., Papenmeier, S., Schmiedinger, I., Zeller, M.A., Böttcher, M.E., 2021. A multi-tracer study of freshwater sources for a temperate urbanized coastal bay (Southern Baltic Sea). Front. Environ. Sci. 9, 642346. https://doi.org/10.3389/fenvs.2021.642346
- 114. Winde, V., Böttcher, M.E., Escher, P., Böning, P., Beck, M., Liebezeit, G., Schneider, B., 2014. Tidal and spatial variations of DI 13 C and aquatic chemistry in a temperate tidal basin during winter time. J. Marine Syst. 129, 394-402. https://doi.org/10.1016/j.jmarsys.2013.08.005
- 115. Whiticar, M.J., Werner, F., 1981. Pockmarks: Submarine Vents of Natural Gas or Freshwater Seeps? Geo-Mar. Lett. 1, 193-199. https://doi.org/10.1007/BF02462433
- 116. Whiticar, M.J., Faber, E., 1986. Methane oxidation in sediment and water column environments — Isotope evidence. Adv. Org. Geochem. 10, 759-768. https://doi.org/10.1016/S0146-6380(86)80013-4
- 117. Whiticar, M.J., 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291-314. https://doi.org/10.1016/S0009-2541(99)00092-3
- 118. Zektzer, I.S., Ivanov, V.A., Meskheteli, A.V., 1973. The problem of direct groundwater discharge to the seas. J. Hydrol. 20, 1-36. https://doi.org/10.1016/0022-1694(73)90042-5
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-70986f6f-ceef-4377-8737-88db43b68b45