Warianty tytułu
Języki publikacji
Abstrakty
As a green and safe amino acid surfactant, sodium lauryl glutamate (SLG) has been favored by researchers. However, SLG has low solubility and its single system is not conducive to its application. Zwitterionic surfactants can increase its solubility by forming mixed micelles and possibly new phase states. In this paper, SLG was combined with lauramide propyl hydroxysulfobetaine (LHSB), and its different states were characterized. The type of phase states were determined and the pseudo-ternary phase diagrams were drawn. It was found that when the concentration of SLG was low and the proportion of SLG was not high, there were a large number of globular micelles in the solution, and rod-like micelles would appear as the concentration increased. As the concentration further increased, the SLG/LHSB system exhibited the characteristic of worm like micelles. With the further increase of concentration, the liquid crystal structures of hexagonal and layered phases were observed.
Czasopismo
Rocznik
Tom
Strony
70--75
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wz.
Twórcy
autor
- No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
autor
- No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
autor
- No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
autor
- No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China
autor
- No. 100 Haiquan Road, Shanghai Institute of Technology, Shanghai 201418, PR China, gyz@sit.edu.cn
Bibliografia
- 1. Sreenu, M., Nayak, R.R., Prasad, R.B.N. & Sreedhar, B. (2014). Synthesis, surface and micellar properties of sodium N-oleoyl amino acids. Colloid. Surf. A. 449, 74–81. DOI: 10.1016/j. colsurfa.2014.02.037.
- 2. Bordes, R., Tropsch, J.D. & Holmberg, K. (2010). Role of an amide bond for self-assembly of surfactants. Langmuir 26, 3077–3083. DOI: 10.1021/la902979m.
- 3. Sun, H., Cheng, R., Deng, C., Meng, F., Dias, A.A., Hendriks, M., Feijen, J. & Zhong, Z. (2015). Enzymatically and reductively degradable α-amino acid-based poly (ester amide) s: synthesis, cell compatibility, and intracellular anticancer drug delivery. Biomacromolecules, 16(2), 597–605. DOI: 10.1021/bm501652d.
- 4. Perinelli, D.R., Casettari, L., Cespi, M., Fini, F., Man, D.K.W., Giorgioni, G., Canala, S., Lam, J.K.W., Bonacucina, G. & Palmieri, G.F. (2016). Chemical–physical properties and cytotoxicity of N-decanoyl amino acid-based surfactants: Effect of polar heads. Colloid. Surface. A. 492, 38–46. DOI: 10.1016.j.colsurfa.2015.12.009.
- 5. Morán, M.C., Pinazo, A., Pérez, L., Clapés, P., Angelet, M., García, M.T., Vinardell, M.P. & Infante, M.R. (2004). “Green” amino acid-based surfactants. Green Chem. 6(5), 233–240. DOI: 10.1039/B400293H.
- 6. Zhang, D., Sun, Y., Deng, Q., Qi, X., Sun, H. & Li, Y. (2016). Study of the environmental responsiveness of amino acid-based surfactant sodium lauroylglutamate and its foam characteristics. Colloid. Surf. A. 504, 384–392. DOI: 10.1016/j. colsurfa.2016.05.097.
- 7. Chandra, N. & Tyagi, V. (2013). Synthesis, properties, and applications of amino acids based surfactants: a review. J. Disper. Sci. Technol. 34(6), 800–808. DOI: 10.1080/01932691.2012.695967.
- 8. Pinazo, A., Manresa, M., Marques, A.M. & Pérez, L. (2016). Amino acid–based surfactants: New antimicrobial agents. Adv. Colloid Interfac. 228, 17–39. DOI: 10.1016/j.cis.2015.11.007.
- 9. Bordes, R. & Holmberg, K. (2011). Physical chemical characteristics of dicarboxylic amino acid-based surfactants. Colloid. Surface. A. 391(1), 32–41. DOI: 10.1016/j.colsurfa.2011.03.023.
- 10. Fujii, M., Inoue, M. & Fukami, T. (2017). Novel amino acid-based surfactant for silicone emulsification and its application in hair care products: a promising alternative to quaternary ammonium cationic surfactants. Int. J. Cosmetic Sci. 39(5), 556–563. DOI: 10.1111/ics.12414.
- 11. Van Roosmalen, M.G.E., Woerlee, G.F. & Witkamp, G.J. (2004). Amino acid based surfactants for dry-cleaning with high-pressure carbon dioxide. J. Supercrit. Fluid. 32(1-3), 243–54. DOI: 10.1016/j.supflu.2004.01.005.
- 12. Cornwell, P. (2018). A review of shampoo surfactant technology: consumer benefits, raw materials and recent developments. Int. J. Cosmetic Sci. 40(1), 16–30. DOI: 10.1111/ics.12439.
- 13. Müller, P., Weber, E., Helbig, C. & Baldauf, H. (2001). Tethering of long-chain amino acids to a rigid aromatic core— A new type of preorganized surfactants acting as flotative agents. J. Surf. Deterg. 4(4), 407–414. DOI: 10.1007/s11743-001-0195-z.
- 14. Zhang, Q., He, C., Zhang, D., Jiang, W. & Zhang, W. (2022). Research on viscoelastic properties of SLG-LHSB system: Effects of pH and concentration on micelles in the system. J. Mol. Liq. 367(4), 120593. DOI: 10.1016/j.molliq.2022.120593.
- 15. Zhang, W., Gao, Z., Zhu, H. & Zhang, Q. (2021). Mixed micellization of cationic/anionic amino acid surfactants: Synergistic effect of sodium lauroyl glutamate and alkyl tri-methyl ammonium chloride. J. Disper. Sci. Technol. 43(14), 1–13. DOI: 10.1080/01932691.2021.1929289.
- 16. Tah, B., Pal, P., Mahato, M. & Talapatra, G.B. (2011). Aggregation behavior of SDS/CTAB catanionic surfactant mixture in aqueous solution and at the air/water interface. J. Phys. Chem. B 115(26), 8493–8499. DOI: 10.1021/jp202578s.
- 17. Gao, B. & Ding, H. (2008). Synthesis and application of betaine type surfactants, Chnia Cleaning Industry, 2, 72–74. (in Chinese).
- 18. Lu, H. (2013). Study on self-assembly thickening and rheological behaviors in mixed systems of amino acid-based/zwitterionic surfactants. Unpublished master’s dissertation, East China University of Science and Technology, Shanghai, China.
- 19. Rehage, H. & Hoffmann, H. (1988). Rheological properties of viscoelastic surfactant systems. J. Phys. Chem. 92, 4712–4719. DOI: 10.1021/j100327a031.
- 20. Krishnaswamy, R., Ghosh, S.K., Lakshmanan, S., Raghunathan, V. & Sood, A.K. (2005). Phase behavior of concentrated aqueous solutions of cetyltrimethylammonium bromide (CTAB) and sodium hydroxy naphthoate (SHN). Langmuir, 21(23), 10439–10443. DOI: 10.1021/la051781q.
- 21. Granek, R. & Cates, M.E. (1992). Stress relaxation in living polymers: Results from a Poisson renewal model. J. Chem. Phys. 96(6), 4758–4767. DOI: 10.1063/1.462787.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-70915c8f-d863-4f17-a71f-161e33aac234