Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2016 | Nr 2 | 102--109
Tytuł artykułu

Plazmowe źródła jonów do analizy substancji psychoaktywnych

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Plasma ion source for analysis of psychoactive substances
Języki publikacji
PL
Abstrakty
PL
W niniejszej pracy opisane zostały techniki jonizacji w otoczeniu atmosferycznym (ADI-MS). W szczególności przedstawiono budowę i sposób działania wybranych plazmowych źródeł jonów (Flowing Atmospheric-Pressure Afterglow, Direct Analysis in Real Time i Dielectric Barrier Discharge Ionization) oraz ich zastosowanie do badań substancji psychoaktywnych.
EN
In this article Ambient desorption/ionization mass spectrometry methods were described. Especially construction, principle of operation of chosen plasma ion sources (Flowing Atmospheric-Pressure Afterglow, Direct Analysis in Real Time and Dielectric Barrier Discharge Ionization) and their application for psychoactive substances detection were highlighted.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Tom
Strony
102--109
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Inżynierii Materiałowej i Ceramiki, al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] Horvatic V., Vadla C., Franzke J.: Discussion of fundamental processes in dielectric barrier discharges used for soft ionization, Spectrochimica Acta Part B 100 (2014) 52-61.
  • [2] Marcus R. K., Burdette C. Q., Manard B. T., Zhang L. X.: Ambient desorption/ionization mass spectrometry using a liquid sampling-atmospheric glow discharge (LS-APGD) ionization source, Anal Bioanal Chem (2013) 405:8171-8184.
  • [3] Harris G. A., Galhena A. S., Fernández F. M.: Ambient Sampling/Ionization Mass Spectrometry: Applications and Current Trends, Anal. Chem. 2011, 83, 4508-4538.
  • [4] Shelley J. T., Wiley J. S., Chan G. C. Y., Schilling G. D., Ray S. J., Hieftje G. M.: Characterization of direct-current atmospheric-pressure discharges useful for ambient desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 20, 837-844 (2009).
  • [5] Ding X., Duan Y.: Plasma-based ambient mass spectrometry techniques: The current status and future prospective, Mass Spectrom Rev. 2015 Jul-Aug; 34(4):449-73.
  • [6] Cody R. B., Laramée J. A., Durst H. D.: Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions, Anal. Chem., 2005, 77 (8), pp 2297-2302.
  • [7] Albert A., Shelley J. T., Engelhard C., Plasma-based ambient desorption/ionization mass spectrometry: state-of-the-art in qualitative and quantitative analysis, Anal Bioanal Chem. 2014 Oct;406(25):6111-27.
  • [8] Brüggemann M., Karu E., Hoffmann T., Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS, Journal of Mass Spectrometry 2016, Volume 51, Issue 2, 141-149.
  • [9] Domin M., Cody R., Ambient Ionization Mass Spectrometry, The Royal Society of Chemistry, Cambridge 2015.
  • [10] Cegłowski M., Smoluch M., Babij M., Gotszalk T., Silberring J., Schroeder G., Dielectric barrier discharge ionization in characterization of organic compounds separated on thin-layer chromatography plates, PLoS One. 2014 Aug 29;9(8).
  • [11] Smoluch M., Mielczarek P., Silberring J., Plasma-based ambient ionization mass spectrometry in bioanalytical sciences, Mass Spectrom Rev. 2016 Jan-Feb;35(1):22-34.
  • [12] Duvivier, W. F., Beek,T. A., Pennings, E. J., Nielen, M. W. (n.d.). Rapid analysis of Δ-9-tetrahydrocannabinol in hair using direct analysis in real time ambient ionization orbitrap mass spectrometry, Rapid Communications in Mass Spectrometry 28(7):682-90.
  • [13] Chernetsova E. S., Morlock G. E., Determination of drugs and drug-like compounds in different samples with direct analysis in real time mass spectrometry, Mass Spectrom Rev. 2011 Sep-Oct;30(5):875-83.
  • [14] Sovocool G. W., Grange A. H., Detection of illicit drugs on surfaces using direct analysis in real time (DART) time‐of-flight mass spectrometry, Rapid Commun Mass Spectrom. 2011 May 15;25(9):1271-81.
  • [15] Smoluch M., Mielczarek P., Reszke E., Hieftje G. M., Silberring J., Determination of psychostimulants and their metabolites by electrochemistry linked on-line to flowing atmospheric pressure afterglow mass spectrometry, Analyst. 2014 Sep 7;139(17):4350-4355.
  • [16] Smoluch M., Reszke E., Ramsza A., Labuz K., Silberring J., Direct analysis of methcathinone from crude reaction mixture by flowing atmospheric-pressure afterglow mass spectrometry, Rapid Commun Mass Spectrom. 2012 Jul 15;26(13):1577-80.
  • [17] Kumano S., Sugiyama M., Yamada M., Nishimura K., Hasegawa H., Morokuma H., Inoue H., Hashimoto Y., Development of a portable mass spectrometer characterized by discontinuous sample gas introduction, a low-pressure dielectric barrier discharge ionization source, and a vacuumed headspace technique, Anal Chem. 2013 May 21;85(10):5033-9.
  • [18] Gilbert-López B., García-Reyes J. F., Meyer C., Michels A., Franzke J., Molina-Díaz A., Hayen H., Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization-mass spectrometry, Analyst. 2012 Nov 21;137(22):5403-10.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-70857452-e6b8-4b43-9997-4c33b01e03cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.