Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 15, no. 2 | 569--583
Tytuł artykułu

Impedance spectroscopy study of the effect of environmental conditions in the microstructure development of OPC and slag cement mortars

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.
Wydawca

Rocznik
Strony
569--583
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
  • Departament d’Enginyeria Civil, Universitat d’Alacant, P.O. Box 99, 03080 Alacant/Alicante, Spain, jm.ortega@ua.es
autor
  • Departament d’Enginyeria Civil, Universitat d’Alacant, P.O. Box 99, 03080 Alacant/Alicante, Spain
  • Departament d’Enginyeria Civil, Universitat d’Alacant, P.O. Box 99, 03080 Alacant/Alicante, Spain
Bibliografia
  • [1] L. Bertolini, M. Carsana, D. Cassago, A.Q. Cruzio, M. Collepardi, MSWI ashes as mineral additions in concrete, Cement and Concrete Research 34 (2004) 1899–1906.
  • [2] I. Sánchez, M.P. López, M.A. Climent, Effect of fly ash on chloride transport through concrete: study by impedance spectroscopy, in: J.J. Beaudoin, J.M. Makar, L. Raki (Eds.), Durability and Degradation of Cement Systems: Corrosion and Chloride Transport, T4.04-4, Proceedings of the 12th International Congress on the Chemistry of Cement, Montreal, National Research Council of Canada, 2007.
  • [3] E. Zornoza, P. Garcés, J. Payá, M.A. Climent, Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst, Cement and Concrete Research 39 (2009) 126–139.
  • [4] V. Corinaldesi, G. Moriconi, Influence of mineral additions on the performance of 100% recycled aggregate concrete, Construction and Building Materials 23 (2009) 2869–2876.
  • [5] M.A. Sanjuan, Los cementos de adición en España del año 2000 al 2005, Cemento y Hormigón 909 (2007) 4–55.
  • [6] J. Bijen, Benefits of slag and fly ash, Construction and Building Materials 10 (1996) 309–314.
  • [7] W.C. Jau, D.S. Tsay, A study of basic engineering properties of slag cement concrete and its resistance to sea water corrosion, Cement and Concrete Research 28 (1998) 1363–1371.
  • [8] A. Bouikni, R.N. Swamy, A. Bali, Durability properties of concrete containing 50% and 65% slag, Construction and Building Materials 23 (2009) 2836–2845.
  • [9] J.M. Ortega, I. Sánchez, M.A. Climent, Durability related transport properties of OPC and slag cement mortars hardened under different environmental conditions, Construction and Building Materials 27 (2012) 176–183.
  • [10] D. Manmohan, P.K. Mehta, Influence of pozzolanic, slag and chemical admixtures on pore size distribution and permeability of hardened cement pastes, Cement, Concrete, and Aggregates 3 (1981) 63–67.
  • [11] J. Geiseler, H. Kollo, E. Lang, Influence of blast furnace cements on durability of concrete structures, ACI Materials Journal 92 (1995) 252–257.
  • [12] M.D.A. Thomas, A. Scott, T. Bremmer, A. Bilodeau, D. Day, Performance of slag concrete in marine environment, ACI Materials Journal 105 (2008) 628–634.
  • [13] V. Baroghel-Bouny, Water vapour sorption experiments on hardened cementitious materials: Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure, Cement and Concrete Research 37 (2007) 414–437.
  • [14] P.A. Webb, C. Orr, Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corporation, Norcross, 1997.
  • [15] E. Robens, B. Benzler, G. Büchel, H. Reichert, K. Schumacher, Investigation of characterizing methods for the microstructure of cement, Cement and Concrete Research 32 (2002) 87–90.
  • [16] W.J. McCarter, R. Brousseau, The a.c. response of hardened cement paste, Cement and Concrete Research 20 (1990) 891–900.
  • [17] S. Havriliak Jr., S.J. Havriliak, Dielectrical and Mechanical Relaxation in Materials, Hanser Publishers, Munich, 1997.
  • [18] M. Cabeza, P. Merino, A. Miranda, X.R. Nóvoa, I. Sánchez, Impedance spectroscopy study of hardened Portland cement paste, Cement and Concrete Research 32 (2002) 881–891.
  • [19] M. Cabeza, M. Keddam, X.R. Nóvoa, I. Sánchez, H. Takenouti, Impedance spectroscopy to characterize the pore structure during the hardening process of Portland cement paste, Electrochimica Acta 51 (2006) 1831–1841.
  • [20] I. Sánchez, X.R. Nóvoa, G. de Vera, M.A. Climent, Microstructural modifications in Portland cement concrete due to forced ionic migration tests. Study by impedance spectroscopy, Cement and Concrete Research 38 (2008) 1015–1025.
  • [21] I. Sánchez, M.P. López, J.M. Ortega, M.A. Climent, Impedance spectroscopy: an efficient tool to determine the non-steady- state chloride diffusion coefficient in building materials, Materials and Corrosion 62 (2011) 139–145.
  • [22] Y. Li, C. Sui, Q. Ding, Study on the cracking process of cement- based materials by AC impedance method and ultrasonic method, Journal of Nondestructive Evaluation 31 (2012) 284–291.
  • [23] J.M. Ortega, A. Albaladejo, J.L. Pastor, I. Sánchez, M.A. Climent, Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles, Construction and Building Materials 38 (2013) 84–93.
  • [24] V. Ferrándiz-Mas, E. García-Alcocel, Durability of expanded polystyrene mortars, Construction and Building Materials 46 (2013) 175–182.
  • [25] Ö. Çakir, F. Aköz, Effect of curing conditions on the mortars with and without GGBFS, Construction and Building Materials 22 (2008) 308–314.
  • [26] A.A. Ramezanianpour, V.M. Malhotra, Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume, Cement and Concrete Composites 17 (1995) 125–133.
  • [27] J.M. Ortega, V. Ferrándiz, C. Antón, M.A. Climent, I. Sánchez, Influence of curing conditions on the mechanical properties and durability of cement mortars, in: A.A. Mammoli, C.A. Brebbia (Eds.), Materials Characterisation IV: Computational Methods and Experiments, WIT Press, New Forest, 2009, pp. 381–392.
  • [28] J.M. Ortega, I. Sánchez, M.A. Climent, Influence of environmental conditions on the durability properties of slag cement mortars, in: J. Zachar, P. Claisse, T.R. Naik, E. Ganjian (Eds.), Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, UWM Center for By-Products Utilization, Ancona, 2010, pp. 277–287.
  • [29] M. Cabeza, P. Merino, X.R. Nóvoa, I. Sánchez, Electrical effects generated by mechanical loading of hardened Portland cement paste, Cement and Concrete Composites 25 (2003) 351–356.
  • [30] I. Sánchez, M. Sánchez, M.A. Climent, C. Alonso, Impedance spectroscopy to characterize microstructural changes in liquid and solid phases of mortars exposed to high temperature, in: E.A.B. Koenders, F. Dehn (Eds.), Procedings of the 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, RILEM Publications SARL, Delft, 2011, pp. 43–51.
  • [31] Asociación Española de Normalización y Certificación, Norma UNE-EN 197-1 (only available in Spanish), Madrid, Spain, 2000, equivalent to the European Standard EN 197-1, 2000.
  • [32] Asociación Española de Normalización y Certificación, Norma UNE-EN 196-1 (only available in Spanish), Madrid, Spain, 2005, equivalent to the European Standard EN 196-1, 2005.
  • [33] Deutsches Institut für Normung e.V., Deutsche Norm DIN 50 008 Part 1, Berlin, Germany, 1981.
  • [34] S. Diamond, Aspects of concrete porosity revisited, Cement and Concrete Research 29 (1999) 1181–1188.
  • [35] S. Diamond, Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials, Cement and Concrete Research 30 (2000) 1517–1525.
  • [36] M. Keddam, H. Takenouti, X.R. Nóvoa, C. Andrade, C. Alonso, Impedance measurements on cement paste, Cement and Concrete Research 27 (1997) 1191–1201.
  • [37] E. Barsoukov, J.R. McDonald, Impedance Spectroscopy, Theory, Experiments, and Applications, Wiley Interscience, New Jersey, 2005.
  • [38] Z. Stoynov, D. Vladikova, P. Zoltowski, E. Makowska, Selectivity study of the differential impedance analysis – comparison with the complex non-linear least-squares method, Electrochimica Acta 47 (2002) 2943–2951.
  • [39] C. Alonso, C. Andrade, X.R. Nóvoa, M. Keddam, H. Takenouti, Study of the dielectric characteristics of cement paste, Materials Science Forum 289–292 (1998) 15–28.
  • [40] C. Andrade, V.M. Blanco, A. Collazo, M. Keddam, X.R. Nóvoa, H. Takenouti, Cement paste hardening process studied by impedance spectroscopy, Electrochimica Acta 44 (1999) 4313–4318.
  • [41] R.J. Detwiler, K.O. Kjellsen, O.E. Gjorv, Resistance to chloride intrusion of concrete cured at different temperatures, ACI Materials Journal 88 (1991) 19–24.
  • [42] S.J. Barnett, M.N. Soutsos, S.G. Millard, J.H. Bungey, Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energies, Cement and Concrete Research 36 (2006) 434–440.
  • [43] J.C. Chern, Y.W. Chan, Effect of temperature and humidity conditions on the strength of blast furnace slag cement concrete, ACI Special Publication 114–67 (1989) 1377–1397.
  • [44] A.M. Neville, Properties of Concrete, Pearson Education Limited, Harlow, 1995.
  • [45] V. Kanna, R.A. Olson, H.M. Jennings, Effect of shrinkage and moisture content on the physical characteristics of blended cement mortars, Cement and Concrete Research 28 (1998) 1467–1477.
  • [46] M.A. Bao-guo, W. Xiao-dong, W. Ming-yuan, Y. Jia-jia, G. Xiao-jian, Drying shrinkage of cement-based materials under conditions of constant temperature and varying humidity, Journal of China University of Mining and Technology 17 (2007) 428–431.
  • [47] C.M. Aldea, F. Young, K. Wang, S.P. Shah, Effects of curing conditions on properties of concrete using slag replacement, Cement and Concrete Research 30 (2000) 465–472.
  • [48] P. Schiessl, U. Wiens, Rapid determination of chloride diffusivity in concrete with blending agents, in: L.O. Nilsson, J.P. Ollivier (Eds.), Proceedings of the RILEM International Workshop on Chloride Penetration into Concrete, RILEM Publications, St-Rémy-lès-Chevreuse, 1995, pp. 115–125.
  • [49] C. Antón, Influencia del contenido de humedad del hormigón sobre la difusividad del ión cloruro, PhD thesis (only available in Spanish), Universidad Autónoma de Madrid, Madrid, 2009.
  • [50] I. Sánchez, C. Antón, G. de Vera, J.M. Ortega, M.A. Climent, Moisture distribution in partially saturated concrete studied by impedance spectroscopy, Journal of Nondestructive Evaluation 32 (2013) 362–371.
  • [51] P. Longuet, L. Burglen, A. Zelwer, La phase liquide du ciment hydrate, Revue des Materiaux de Constuction et de Travaux Publics 676 (1973) 35–41.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7083286d-bbee-4711-86d8-c722bfdc3a11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.