Czasopismo
2014
|
Vol. 5, nr 2
|
54--60
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Fractional-order calculus presents a novel modeling approach for systems with extraordinary dynamical properties by introducing the notions of derivatives and integrals of noninteger order. In system theory this gives rise to extensions to linear, time invariant systems to enhance the description of complex phenomena involving memory or hereditary properties of systems. Standard industrial controllers, such as the PID controller and lead-lag compensator, have also been updated to benefit from the effects of noninteger integration and differentiation, and have advantages over classical controllers in case of both conventional and fractional-order process control. However, given the definitions of fractional operators, accurate digital implementation of fractional-order systems and controllers is difficult because it requires infinite memory. In this work we study the specific implementation of a fractional-order PID controller and fractional-order lead-lag compensator based on an infinite impulse response (IIR) filter structure obtained by applying the Oustaloup recursive filter synthesis technique. Software for generating digital fractional-order is developed and tested on an Atmel AVR microcontroller. The results are verified using a MATLAB/Simulink based real-time prototyping platform.
Rocznik
Tom
Strony
54--60
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Computer Control, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia, aleksei.tepljakov@ttu.ee
autor
- Department of Computer Control, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia, eduard.petlenkov@ttu.ee
autor
- Department of Computer Control, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia, juri.belikov@ttu.ee
Bibliografia
- 1. Y. Q. Chen, I. Petras, and D. Xue, “Fractional order control - a tutorial,” in Proc. ACC ’O9. American Control Conference, 2009, pp. 1397-1411.
- 2. I. Podlubny, L. Dorcak, and I. Kostial, “On fractional derivatives, fractional-order dynamic systems and PIλDμ-controllers,” in Proc. 36th IEEE Conf Decision and Control, vol. 5, 1997, pp. 4985-4990.
- 3. M. Cech and M. Schlegel, “The fractional-order PID controller outperforms the classical one,” in Process control 2006. Pardubice Technical University, 2006, pp. 1-6.
- 4. D. Xue, C. Zhao, and Y. Q. Chen, “Fractional order PID control of a DC-motor with elastic shaft: a case study,” in Proc. 2006 American Control Conference (ACC), 2006.
- 5. Y. Luo and Y. Chen, “Fractional-order [proportional derivative] controller for robust motion control: Tuning procedure and validation,” in Proc. ACC ’O9. American Control Conference, 2009, pp. 1412-1417.
- 6. Y Luo, Y. Q. Chen, H.-S. Ahn, and Y. Pi, “Fractional order robust control for cogging effect compensation in PMSM position servo systems: Stability analysis and experiments,” Control Engineering Practice, vol. 18, no. 9, pp. 1022-1036, 2010.
- 7. A. Oustaloup, F. Levron, B. Mathieu, and F. M. Nanot, “Frequency-band complex noninteger differentiator: characterization and synthesis,” IEEE Trans. Circuits Syst. I, vol. 47, no. 1, pp. 25-39, 2000.
- 8. A. Tepljakov, E. Petlenkov, and J. Belikov, “Implementation and realtime simulation of a fractional-order controller using a MATLAB based prototyping platform,” in Proc. 13th Biennial Baltic Electronics Conference, 2012, pp. 145-148.
- 9. A. Tepljakov, E. Petlenkov, J. Belikov, and M. Halas, “Design and implementation of fractional-order PID controllers for a fluid tank system,” in Proc. 2013 American Control Conference (ACC), Washington DC, USA, June 2013, pp. 1780-1785.
- 10. A. Monje, Y Q. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-order Systems and Controls: Fundamentals and Applications, ser. Advances in Industrial Control. Springer Verlag, 2010.
- 11. I. Petras, S. Grega, and L. Dorcak, “Digital fractional order controllers realized by PIC microprocessor: Experimental results,” in Proc. of the ICCC’2003 conference, High Tatras, Slovak Republic, 2003, pp. 873876.
- 12. A. Tepljakov, E. Petlenkov, and J. Belikov, “Application of Newton’s method to analog and digital realization of fractional-order controllers,” International Journal of Microelectronics and Computer Science, vol. 2, no. 2, pp. 45-52, 2012.
- 13. A. Tepljakov, E. Petlenkov, J. Belikov, and J. Finajev, “Fractional-order controller design and digital implementation using FOMCON toolbox for MATLAB,” in Proc. of the 2013 IEEE Multi-Conference on Systems and Control conference, 2013, pp. 340-345.
- 14. A. Tepljakov, E. Petlenkov, and J. Belikov, “Tuning and digital implementation of a fractional-order PD controller for a position servo,” International Journal of Microelectronics and Computer Science, vol. 4, no. 3, pp. 116-123, 2013.
- 15. A. Tepljakov, E. Petlenkov, and J. Belikov. (2011) FOMCON toolbox. [Online]. Available: http://www.fomcon.net/
- 16. A. Xue, Y. Q. Chen, and D. P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB (Advances in Design and Control), Cst ed. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 2008.
- 17. G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic Systems, 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-7033afa5-97b1-4fef-a9f6-9e31319818ad