Warianty tytułu
Języki publikacji
Abstrakty
This paper concerns the problem of empirical investigation and mathematical modelling of a novel controllable damper using Vacuum Packed Particles. Vacuum Packed Particles tend to be placed among the group of so-called ‘smart structures’. The macroscopic mechanical features of such structures can be controlled by the partial vacuum parameter. The authors consider an application of Bouc-Wen model in order to represent the dynamic behaviour of the investigated device. The verification of the model response with experimental data is discussed. The Bouc-Wen model parameters identification is described.
Rocznik
Tom
Strony
art. no. e141002
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland, anna.mackojc@pw.edu.pl
autor
- Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland
autor
- Institute of Machine Design Fundamentals, Warsaw University of Technology, Poland
Bibliografia
- [1] C. Graczykowski and P. Pawłowski, “Exact physical model of magnetorheological damper,” Appl. Math. Modell., vol. 47, pp. 400–424, 2017, doi: 10.1016/j.apm.2017.02.035.
- [2] M. Makowski and L. Knap, “Reduction of wheel force variations with magnetorheological devices,” J. Vib. Control, vol. 20, no. 10, pp. 1552–1564, 2014, doi: 10.1177/1077546312472916.
- [3] P. Martynowicz, “Study of vibration control using laboratory test rig of wind turbine tower-nacelle system with mr damper based tuned vibration absorber,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 64, no. 2, pp. 347–359, 2016, doi: 10.1515/bpasts-2016-0040.
- [4] T. Butz and O. v. Stryk, “Modelling and simulation of electro- and magnetorheological fluid dampers,” ZAMM – J. Appl. Math. Mech., vol. 82, no. 1, pp. 3–20, 2002, doi: 10.1002/1521-4001(200201)82:1<3::AID-ZAMM3>3.0.CO;2-O.
- [5] J. Wang and G. Meng, “Magnetorheological fluid devices: Principles, characteristics and applications in mechanical engineering,” Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl., vol. 215, no. 3, pp. 165–174, 2001, doi: 10.1243/1464420011545012.
- [6] G. Yang, B.F. Spencer Jr, H.-J. Jung, and J.D. Carlson, “Dynamic modeling of large-scale magnetorheological damper systems for civil engineering applications,” J. Eng. Mech., vol. 130, no. 9, pp. 1107–1114, 2004, doi: 10.1061/(ASCE)0733-9399(2004)130:9(1107).
- [7] C.A. Vivas-Lopez, D. Hernández-Alcantara, R. Morales-Menendez, R.A. Ramírez-Mendoza, and H. Ahuett-Garza, “Method for modeling electrorheological dampers using its dynamic characteristics,” Math. Probl. Eng., 2015, doi: 10.1155/2015/905731.
- [8] M. Cates, J.Wittmer, J.-P. Bouchaud, and P. Claudin, “Jamming, force chains, and fragile matter,” Phys. Rev. Lett., vol. 81, no. 9, p. 1841, 1998, doi: 10.1103/PhysRevLett.81.1841.
- [9] R. Zalewski and P. Chodkiewicz, “Semi-active linear vacuum packed particles damper,” J. Theor. Appl. Mech., vol. 54, no. 1, pp. 311–316, 2016, doi: 10.15632/jtam-pl.54.1.311.
- [10] A. Jiang, T. Aste, P. Dasgupta, K. Althoefer, and T. Nanayakkara, “Granular jamming with hydraulic control,” Am. Soc. Mech. Eng., vol. 55935, 2013, doi: 10.1115/DETC2013-12213.
- [11] J.M. Bajkowski, B. Dyniewicz, and C.I. Bajer, “Semi-active damping strategy for beams system with pneumatically controlled granular structure,” Mech. Syst. Sig. Process., vol. 70-71, pp. 387–396, 2016, doi: 10.1016/j.ymssp.2015.09.026.
- [12] R. Zalewski and T. Szmidt, “Application of special granular structures for semi-active damping of lateral beam vibrations,” Eng. Struct., vol. 65, pp. 13–20, 2014, doi: 10.1016/j.eng struct.2014.01.035.
- [13] A.J. Loeve, O.S. van de Ven, J.G. Vogel, P. Breedveld, and J. Dankelman, “Vacuum packed particles as flexible endoscope guides with controllable rigidity,” Granular Matter, vol. 12, no. 6, pp. 543–554, 2010, doi: 10.1007/s10035-010-0193-8.
- [14] E. Brown et al., “Universal robotic gripper based on the jamming of granular material,” PNAS, vol. 107, no. 44, pp. 18 809–18 814, 2010, doi: 10.1073/pnas.1003250107.
- [15] R. Zalewski, P. Chodkiewicz, and M. Shillor, “Vibrations of a mass-spring system using a granular-material damper,” v, vol. 40, no. 17, pp. 8033–8047, 2016, doi: 10.1016/j.apm.2016.03.053.
- [16] D. Rodak and R. Zalewski, “Innovative controllable torsional damper based on vacuum packed particles,” Materials, vol. 13, no. 19, p. 4356, 2020, doi: 10.3390/ma13194356.
- [17] M. Żurawski, B. Chiliński, and R. Zalewski, “A novel method for changing the dynamics of slender elements using sponge particles structures,” Materials, vol. 13, no. 21, p. 4874, 2020, doi: 10.3390/ma13214874.
- [18] M.D. Luscombe and J.L.Williams, “Comparison of a long spinal board and vacuum mattress for spinal immobilisation,” Emergency Med. J., vol. 20, no. 5, pp. 476–478, 2003, doi: 10.1136/emj.20.5.476.
- [19] P. Bartkowski and R. Zalewski, “A concept of smart multiaxial impact damper made of vacuum packed particles,” MATEC Web of Conferences, vol. 157, p. 05001, 2018, doi: 10.1051/matecconf/201815705001.
- [20] P. Bartkowski, R. Zalewski, and P. Chodkiewicz, “Parameter identification of bouc-wen model for vacuum packed particles based on genetic algorithm,” Arch. Civ. Mech. Eng., vol. 19, no. 2, pp. 322–333, 2019, doi: 10.1016/j.acme.2018.11.002.
- [21] R. Zalewski and M. Pyrz, “Experimental study and modeling of polymer granular structures submitted to internal underpressure,” Mech. Mater., vol. 57, pp. 75–85, 2013, doi: 10.1016/j.mechmat.2012.11.002.
- [22] A. Zbiciak and K. Wasilewski, “Constitutive modelling and numerical implementation of sma material with internal loops,” Arch. Civ. Eng., vol. 64, no. 4/I, 2018, doi: 10.2478/ace-2018-0053.
- [23] M. Sánchez, G. Rosenthal, and L.A. Pugnaloni, “Universal response of optimal granular damping devices,” J. Sound Vib., vol. 331, no. 20, pp. 4389–4394, 2012, doi: 10.1016/j.jsv.2012.05.001.
- [24] R. Bouc, “Forced vibration of mechanical systems with hysteresis,” Proceedings of Fourth Conference on Non-Linear Oscillation, Prague, 5-9 September 1967.
- [25] M. Ismail, F. Ikhouane, and J. Rodellar, “The hysteresis bouc-wen model, a survey,” Arch. Comput. Methods Eng., vol. 16, no. 2, pp. 161–188, 2009, doi: 10.1007/s11831-009-9031-8.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-702db56a-c8d0-4b8e-aa81-a858a3689e8d