Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 16, no. 4 | 182--195
Tytuł artykułu

Experimental Analysis of the Tensile Properties of Painting Canvas

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the practical application of uniaxial testing of painting canvas for determining its mechanical properties is presented. Painting canvases have a complex composite structure whose mechanical properties are considerably improved in relation with the initial basic material. Painting canvas or coated fabrics are obtained by applying a certain number of coatings to raw fabrics. Experimental testing and determining mechanical properties of painting canvas under tensile force at different angles in relation to the weft direction are discussed in the paper. The fabrics were tested before coating, as well as after one, two and three coatings. The values of tensile force in relation to relative extension of coated textiles were measured, as well as breaking force values, elongation at break, contraction at break, work to rupture. Based on the experimentally obtained values, modulus of elasticity, Poisson’s ratio and the level of anisotropy of the coated textile materials were calculated. The experimental results demonstrate the applicability of theoretical formulae. The number of coated layers on the raw fabric exerts a significant impact on the Poisson’s ratio. The values of breaking force, elongation at break, work to rupture and modulus of elasticity increase with an increase in the number of coated layers, and at the same time coefficient of anisotropy decrease. It has been shown that by increasing the number of coated layers in a coated material, its anisotropic properties decrease, while isotropic properties increase. With an increase in the number of coatings, the differences between experimental and theoretical values of modulus of elasticity decrease.
Wydawca

Rocznik
Strony
182--195
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
autor
  • University of Zagreb, Faculty of Textile Technology, Prilaz b. Filipovića 28a, Zagreb, Croatia, zpenava@ttf.hr
  • University of Zagreb, Faculty of Civil Engineering, Kačićeva 26, Zagreb, Croatia
autor
  • University of Zagreb, Faculty of Textile Technology, Prilaz b. Filipovića 28a, Zagreb, Croatia
Bibliografia
  • [1] Bao, L., et al. (1997). Error Evaluation in Measuring the Apparent Possion’s Ratios of Textile Fabrics by Uniaxial Tensile Test. Sen’i Gakkaishi, 53(1), 20–26.
  • [2] Bassett, R. J., et al. (1999). Experiment Methods for Measuring Fabric Mechanical Properties: a Review and Analysis. Textile Research Journal, 69(11), 866–875.
  • [3] Chen, B., Govindaraj, M., (1996). A Parametric Study of Fabric Drape. Textile Research Journal, 66(1), 17-24.
  • [4] Clulow, E.E., Taylor, H. M., (1963). An experimental and theoretical investigation of biaxial stress-strain relations in a plain-weave cloth. Journal of the Textile Institute, 54(8), T323-T347.
  • [5] Cornelius, F.D., (1967). Movement of wood and canvas for paintings in response to high and low RH cycles. Studies in Conservation, 12(2), 76-79.
  • [6] Fressl, I. (1966). Slikarska tehnologija. Radionice škole primijenjene umjetnosti (Zagreb).
  • [7] FuJii, T., (1992). Study on strength and nonlinear stress-strain response of plain woven glass fiber laminates under biaxial loading. Journal of Composite Materials, 26(17), 2493-2510.
  • [8] Greenwood, K. (1975). Weaving: Control of Fabric Structure. Merrow Technical Library (Shildon).
  • [9] Hearle, J.W.S. et al. (1969). Structural Mechanics of Yarns and Fabrics. Wiley-Interscience (New York).
  • [10] Hedley G., (1988). Relative humidity and the stress/strain response of canvas paintings: uniaxial measurements of naturally aged samples. Studies in Conservation, 33(3), 133-148.
  • [11] Hedley, G., (1981). The stiffness of lining fabrics: theoretical and practical considerations in ICOM Committee for Conservation 6th Triennial Meeting, Ottawa, 81/2/2-1-13.
  • [12] Kawabata, S., (1973). The finite-deformation theory of plain weave fabrics, Part 1: The biaxial deformation theory. Journal of the Textile Institute, 64(1), 137-149.
  • [13] Kilby, W. F., (1963). Planar Stress-strain Relationship in Woven Fabrics. Journal of the Textile Institute, 54(1), T9-T27.
  • [14] Kovar, R., Gupta, B. S., (2009). Study of the Anisotropic Nature of the Rupture Properties of a Plain Woven Fabric. Textile Research Journal, 79(6), 506-516.
  • [15] Kraigher-Hozo, M. (1991). Slikarstvo/ Metode slikanja/ Materijali. Svjetlost (Sarajevo).
  • [16] Lekhnitskii, S. G. (1981). Theory of Elasticity of an Anisotropic Elastic Body. Mir Publishers (Moscow).
  • [17] Lloyd, D. W., et al., (1977). An Examination of a “Wide jaw” Test for the Determination of Fabric Poisson Ratio. Journal of the Textile Institute, 68 (9), 299–302.
  • [18] Masters, J.E., Ko, F., (1996). Guest editorial. Composites Science and Technology, 56 (3), 205-207.
  • [19] Michalski S., (1991). Paintings-their response to temperature, relative humidity, shock, and vibration. Art in Transit.: Studies in the Transport of Paintings, ed. M.F. Mecklenburg, National Gallery of Art, Washington, 223-249.
  • [20] Ozkul, B., Karaoglan, D., (2011). Regression control chart for determination of Young’s modulus: A case study. Scientific Research and Essays, 6(30), 6393-6403.
  • [21] Pan, N., (1996). Analysis of woven fabric strengths: prediction of fabric strength under uniaxial and biaxial extensions. Composites Science and Technology, 56(3), 311-327.
  • [22] Pan, N., Yoon, M-Y., (1996). Structural Anisotropy, Failure Criterion, and Shear Strength of Woven Fabrics. Textile Research Journal, 66(4), 238-244.
  • [23] Peirce, F. T., (1937). The geometry of cloth structure. Journal of the Textile Institute, 28(3), T45-T96.
  • [24] Penava Ž. et al., (2014). Influence of anisotropy and yarn count on the modulus of elasticity of weft rib knitted fabric. Tekstil, 63 (9-10), 283-292.
  • [25] Penava, Ž., et al., (2014). Determination of the Elastic Constants of a Plain Woven Fabrics by Tensile Test in Various Directions. FIBRES & TEXTILES in Eastern Europe, 22(2) 57-63.
  • [26] Penava, Ž., Šimić, D., (2012). Analysis of the elastic constants of woven fabrics for at random chosen extension directions. Tekstil, 61(7-12), 169–179.
  • [27] Russell, W.H., Berger, G.A., (1982). The behaviour of canvas as a structural support for painting in Science and Technology in the Service of Conservation, IIC, London, 139-145.
  • [28] Sun, H., (2005). On the Poisson’s ratios of a woven fabric. Composite Structures 68(4), 505-510.
  • [29] Turinski, Ž. (1976). Slikarska tehnologija. Turistička štampa (Beograd).
  • [30] Warren, W.E., (1990). The elastic properties of woven polymeric fabric. Polymer Engineering Science, 30(20) 1309-1313.
  • [31] Young C. R. T., Hibberd R. D., (1999). Biaxial tensile testing of paintings on canvas. Studies in Conservation, 44, 129-141.
  • [32] Zheng, J., (2008). Measuring Technology of the Anisotropic Tensile Properties of Woven Fabrics. Textile Research Journal, 78(12), 1116–1123.
  • [33] Zouari, R., et al., (2010). Experimental and numerical analyses of fabric off-axes tensile test. Journal of the Textile Institute, 101(1), 58–68.
  • [34] Zweben, C. et al. (1989). Mechanical Behaviour and Properties of Composite Materials. Vol.1, Technomic (Lancaster).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6fd83977-40f9-40de-a303-698bd162263c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.