Warianty tytułu
Języki publikacji
Abstrakty
In recent years, the application of pervious concrete (PC) in urban areas has expanded mainly due to its high potential for controlling and guiding surface waters and floods. However, its poor mechanical properties compared to conventional concrete hinder its widespread application and limit it to parking lots, sidewalks, and local streets. Therefore, identifying the parameters effective on PC’s physical and mechanical properties and durability could help resolve its weaknesses and enhance its performance. This review article investigated and discussed the PC’s performance properties and weaknesses and explore the solutions available for improving these properties. Based on a review of the literature, the solutions included the PC’s mix design basic property variations and the incorporation of various additives. The common mixture utilized in most studies contained a water-to-cement ratio of 0.25:0.35, resulting in compressive strength of 7-27 MPa, porosity of 15-35%, and permeability of 0.2-1.22 mm/s.
Czasopismo
Rocznik
Tom
Strony
577--591
Opis fizyczny
Bibliogr. 54 poz., il., tab.
Twórcy
autor
- Dept. of Civil Eng., Zanjan Branch, Islamic Azad University, Zanjan, I.R. Iran, Makan.pedram@gmail.com
autor
- Dept. of Civil Eng., University of Guilan, Rasht, I.R. Iran, Rmadandoust@guilan.ac.ir
autor
- Dept. of Civil Eng., University of Guilan, Rasht, I.R. Iran, Arabani@guilan.ac.ir
Bibliografia
- [1] V. Henderson, S. Tighe, “Evaluation of pervious concrete pavement performance in cold weather climates”, International Journal of Pavement Engineering, 2011, vol. 13, no. 3, pp. 197-208, DOI: 10.1080/10298436.2011.572970.
- [2] Report on Pervious Concrete. ACI 522R. Farmington Hills, MI: American Concrete Institute, 2006.
- [3] A. Bonicelli, M. Crispino, F. Giustozzi, M. Shink, “Laboratory analysis for investigating the impact of compaction on the properties of pervious concrete mixtures for road pavements”, Advanced Materials Research, 2013, vol. 723, pp. 409-419, DOI: 10.4028/www.scientific.net/AMR.723.409.
- [4] Z. Yang, “Freezing and Thawing of Pervious Concrete using Simulated Field Conditions”, ACI Materials Journal, 2011, vol. 108, pp. 187-195, DOI: 10.14359/51682312.
- [5] T. Liu, Z. Wang, D. Zou, A. Zhou, J. Du, “Strength enhancement of recycled aggregate pervious concrete using a cement paste redistribution method”, Cement and Concrete Research, 2019, vol. 122, pp. 72-82, DOI: 10.1016/j.cemconres.2019.05.004.
- [6] D. Rhead, “Evolution of Pervious Concrete Pavement at the Ministry of Transportation Ontario, Canada”, Transportation Research Board, 2012.
- [7] B.J. Putman, A.I. Neptune, “Comparison of test specimen preparation techniques for pervious concrete pavements”, Construction and Building Materials, 2011, vol. 25, no. 8, pp. 3480-3485, DOI: 10.1016/j.conbuildmat.2011.03.039.
- [8] A.A. Kumar, et al., “Experimental investigation on mechanical and durability properties of pervious concrete”, International Journal of Advance Engineering and Research Development, 2017, vol. 4, no. 12. DOI: https://doi.org/10.21090/ijaerd.15372.
- [9] A. Neptune, B. Putman, “Effect of aggregate size and gradation on pervious concrete mixtures”, ACI Materials Journal, 2010, vol. 107, no. 6, DOI: 10.14359/51664050.
- [10] A. Torres, A. Burkhart, “Developing sustainable high strength concrete mixtures using local materials and recycled concrete”, Materials Sciences and Applications, 2016, vol. 7, no. 2, pp. 128-137, DOI: 10.4236/msa.2016.72013.
- [11] S. Ong, K. Wang, Y. Ling, G. Shi, “Pervious Concrete Physical Characteristics and Effectiveness in Stormwater Pollution Reduction”, InTrans Project Reports, Iowa State University, USA, 2016.
- [12] M.H. Zhang, J. Islam, “Use of Nano-silica to reduce the setting time and increase early strength of concretes with high volumes of fly ash or slag”, Construction and Building Materials, 2012, vol. 29, pp. 573-580, DOI: 10.1016/j.conbuildmat.2011.11.013.
- [13] H. Najm, H. Wang, A.M. Roda, The use of porous concrete for sidewalks. CAIT Rutgers, The State University of New Jersey, 2017.
- [14] J.T. Kevern, “Advancement of pervious concrete durability”, Iowa State University, USA, 2008, DOI: 10.31274/RTD-180813-6632.
- [15] M.A. Pindado, A. Aguado, A. Josa, “Fatigue behavior of polymer-modified porous concretes”, Cement and Concrete Research, 1999, vol. 29, no. 7, pp. 1077-1083, DOI: 10.1016/S0008-8846(99)00095-2.
- [16] A.M. Amde, S. Rogge, Development of High Quality Pervious Concrete Specifications for Maryland Conditions. Maryland Department of Transportation, 2013.
- [17] ASTM C666 / C666M-15 Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. ASTM International, West Conshohocken, PA, 2015.
- [18] K. Cosic, L. Korat, V. Ducman, I. Netinger, “Influence of aggregate type and size on properties of pervious concrete”, Construction and Building Materials, 2015, vol. 78, pp. 69-76, DOI: 10.1016/j.conbuildmat.2014.12.073.
- [19] M. Sonebi, M.T. Bassuoni, “Investigating the effect of mixture design parameters on pervious concrete by statistical modelling”, Construction and Building Materials, 2013, vol. 38, pp. 147-154, DOI: 10.1016/j.conbuildmat.2012.07.044.
- [20] R.R. Singh, A.J. Sidhu, “Fracture and fatigue study of pervious concrete with 15-20% void ratio”, Sãdhanã, 2020, vol. 45, no. 1, DOI: 10.1007/s12046-020-01374-6.
- [21] S.N. Guntakal, S. Selvan, “Application of Pervious Concrete Pavements: A Review”, Rasayan Journal, 2017, vol. 10, pp. 32-36, DOI: 10.7324/RJC.2017.1011533.
- [22] ACI Committee 522R-06, Pervious Concrete. American Concrete Institute, 2006.
- [23] N. Neithalath, J. Weiss, J. Olek, “Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance”, Cement and Concrete Research, 2006, vol. 36, no. 11, pp. 2074-2085, DOI: 10.1016/j.cemconres.2006.09.001.
- [24] A. Ibrahim, E. Mahmoud, M. Yamin, V.C. Patibandla, “Experimental study on Portland cement pervious concrete mechanical and hydrological properties”, Construction and Building Materials, 2014, vol. 50, pp. 524-529, DOI: 10.1016/j.conbuildmat.2013.09.022.
- [25] A. Panimayam, P. Chinnadurai, R. Anuradha, M. Rajalingam, A. Raj, “Experimental study of pervious concrete using M-sand”, International Journal of Chemtech Research, 2017, vol. 10, no. 8, pp. 186-198.
- [26] A. Yahia, K.D. Kabagire, “New approach to proportion pervious concrete”, Construction and Building Materials, 2014, vol. 62, pp. 38-46, DOI: 10.1016/j.conbuildmat.2014.03.025.
- [27] M. Kovac, A. Sicakova, “Pervious concrete as an environmental solution pavement: Focus on key properties”, Journal of Environments, 2018, vol. 5, no. 1, pp. 1-9, DOI: 10.3390/environments5010011.
- [28] M. Suleiman, J. Kevern, V.R. Schaefer, K. Wang, “Effect of Compaction Energy on Pervious Concrete Properties”, in Proceedings of the NRM CA Concrete Technology Forum: Focus on Pervious Concrete. Nashville, TN, 2006.
- [29] K. Wang, J. Kevern, V. Schaefer, “Self Consolidating Pervious Concrete for Overlay Applications”, in Proceedings of the National Ready-Mixed Concrete Association Concrete Technology Forum. Denver, CO, 2008.
- [30] ACI Committee 522R-10. Pervious Concrete Standard.
- [31] V.R. Schaefer, et al., Mix design development for pervious concrete in cold weather climates. National Concrete Pavement Technology Centre, 2006, p. 83.
- [32] S. Nassiri, O. AlShareedah, Preliminary Procedure for Structural Design of Pervious Concrete Pavements. Washington State, Department of Transportation, 2017.
- [33] C. Gaedicke, A. Marines, F. Miankodila, “A method for comparing cores and cast cylinders in virgin and recycled aggregate pervious concrete”, Construction and Building Materials, 2014, vol. 52, pp. 494-503, DOI: 10.1016/j.conbuildmat.2013.11.043.
- [34] B. Jimma, P. Rangaraju, “Film forming ability of cement pastes and its application in mixture proportioning of pervious concrete”, Construction and Building Materials, 2014, vol. 71, pp. 273-282, DOI: 10.1016/J.CONBUILDMAT.2014.08.018.
- [35] N. Ghafoori, S. Dutta, “Laboratory investigation of compacted no-fines concrete for paving materials, Journal of Materials in Civil Engineering, 1995, vol. 7, no. 3, pp. 183-191, DOI: 10.1061/(ASCE)0899-1561(1995)7:3(183).
- [36] R.C. Meininger, “No-fine pervious concrete for paving”, Concrete International, 1988, vol. 10, pp. 20-27.
- [37] M.U. Maguesvari, V. Narasimha, “Studies on characterization of pervious concrete for pavement applications”, Procedia - Social and Behavioral Sciences, 2013, vol. 104, pp. 198-207, DOI: 10.1016/j.sbspro.2013.11.112.
- [38] S. Chopda, B. Chhattani, “Mechanical Properties of Pervious Concrete”, International Journal Technology, 2015, vol. 5, no. 2, pp. 113-117, DOI: 10.5958/2231-3915.2015.00006.1.
- [39] C.B. Patil, P.S. Shinde, B.M. Mohite, S.S. Ingale, “Experimental evaluation of compressive and flexural strength of pervious concrete by using polypropylene fiber”, International Journal of Engineering Research and Technology, 2017, vol. 6, no. 4, DOI: 10.17577/ijertv6is040647.
- [40] N.A. Brake, H. Allahdadi, F. Adam, “Flexural strength and fracture size effects of pervious concrete”, Construction and Building Materials, 2016, vol. 113, pp. 536-543, DOI: 10.1016/j.conbuildmat.2016.03.045.
- [41] M. Vancura, L. Khazanovich, Performance Evaluation of In-Service Pervious Concrete Pavements in Cold Weather. University of Minnesota, 2010.
- [42] R. Zhong, K. Wille, “Material design and characterization of high performance pervious concrete”, Construction and Building Materials, 2015, vol. 98, pp. 51-60, DOI: 10.1016/j.conbuildmat.2015.08.027.
- [43] E. R., S. Hatanaka, “Prediction of porosity of pervious concrete based on its dynamic elastic modulus”, Results in Materials, 2021, vol. 10, DOI: 10.1016/j.rinma.2021.100192.
- [44] A. Alam, L. Haselbach, “Estimating the modulus of elasticity of pervious concrete based on porosity”, Advances in Civil Engineering Materials, 2014, vol. 3, no. 1, DOI: 10.1520/acem20130081.
- [45] P.D. Tennis, M.L. Leming, D.J. Akers, Pervious Concrete Pavements. Skokie, Illinois: Portland Cement Association and National Ready Mixed Concrete Association, 2004.
- [46] N. Neithalath, W.J. Weiss, J. Olek, Development of quiet and durable porous portland cement concrete paving materials. Final report, The Institute for Safe, Quiet, and Durable Highways, 2003, pp. 179.
- [47] M. Zaldo, “Pervious concrete pavements industry focus”, National Ready Mixed Concrete Association, 2006. [Online]. Available: www.NRMCA.org.
- [48] J.T. Kevern, V.R. Schaefer, K. Wang, M.T. Suleiman, “Pervious concrete mixture proportions for improved freeze-thaw durability”, Journal of ASTM International, 2008, vol. 5, pp. 1-12, DOI: 10.1520/jai101320.
- [49] B.M. Taheri, A.M. Ramezanianpour, S. Sabokpa, M. Gapele, “Experimental evaluation of freeze-thaw durability of pervious concrete”, Journal of Building Engineering, 2021, vol. 33, DOI: 10.1016/j.jobe.2020.101617.
- [50] A.K. Chandrappa, K.P. Biligiri, “Flexural-fatigue characteristics of pervious concrete: Statistical distributions and model development”, Construction and Building Materials, 2017, vol. 153, pp. 1-15, DOI: 10.1016/j.conbuildmat.2017.07.081.
- [51] K. Jiao, “Compression fatigue properties of pervious concrete”, ACI Materials Journal, 2020, vol. 117, no. 2, DOI: 10.14359/51722402.
- [52] E. Bai, J. Xu, S. Lu, K. Lin, Y. Zhang, “Comparative study on the dynamic properties of lightweight porous concrete”, RSC Advances, 2018, no. 26; pp. 14454-14461, DOI: 10.1039/c8ra00082d.
- [53] J. Bu, X. Chen, S. Liu, S. Li, N. Shen, “Experimental study on the dynamic behavior of pervious concrete for permeable pavement”, Computers and Concrete, 2018, vol. 22, no. 3, pp. 291-303, DOI: 10.12989/cac.2018.22.3.291.
- [54] A.S.A. Ozbek, J. Weerheijm, E. Schlangen, K. Van Breugel, “Dynamic behavior of porous concretes under drop weight impact testing”, Cement and Concrete Composites, 2013, vol. 39, pp. 1-11, DOI: 10.1016/j.cemconcomp.2013.03.012.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6fd60d65-c889-4629-baa7-3d7a5cc5b536