Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 184, nr 3 | 181--203
Tytuł artykułu

On the Hardness of Energy Minimisation for Crystal Structure Prediction

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Crystal Structure Prediction (csp) is one of the central and most challenging problems in materials science and computational chemistry. In csp, the goal is to find a configuration of ions in 3D space that yields the lowest potential energy. Finding an efficient procedure to solve this complex optimisation question is a well known open problem. Due to the exponentially large search space, the problem has been referred in several materials-science papers as "NP-Hard and very challenging" without a formal proof. This paper fills a gap in the literature providing the first set of formally proven NP-Hardness results for a variant of csp with various realistic constraints. In particular, we focus on the problem of removal: the goal is to find a substructure with minimal potential energy, by removing a subset of the ions. Our main contributions are NP-Hardness results for the csp removal problem, new embeddings of combinatorial graph problems into geometrical settings, and a more systematic exploration of the energy function to reveal the complexity of csp. In a wider context, our results contribute to the analysis of computational problems for weighted graphs embedded into the three-dimensional Euclidean space.
Wydawca

Rocznik
Strony
181--203
Opis fizyczny
Bibiogr. 24 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Adamson D, Deligkas A, Gusev VV, Potapov I. On the Hardness of Energy Minimisation for Crystal Structure Prediction. In: Lecture Notes in Computer Science), volume 12011 LNCS. Springer, 2020 pp. 587-596. arXiv: 1910.12026 [cs.CC].
  • [2] Lyakhov AO, Oganov AR, Valle M. How to predict very large and complex crystal structures. Computer Physics Communications, 2010. 181(9):1623-1632. doi:10.1016/j.cpc.2010.06.007.
  • [3] Woodley SM, Catlow R. Crystal structure prediction from first principles. Nature materials, 2008. 7(12):937-946. doi:10.1038/nmat2321.
  • [4] Antypov D, Deligkas A, Gusev V, Rosseinsky MJ, Spirakis PG, Theofilatos M. Crystal Structure Prediction via Oblivious Local Search. CoRR, 2020. abs/2003.12442.
  • [5] Mellot-Draznieks C, Girard S, F´erey G, Sch¨on JC, Cancarevic Z, Jansen M. Computational Design and Prediction of Interesting Not-Yet-Synthesized Structures of Inorganic Materials by Using Building Unit Concepts. Chemistry – A European Journal, 2002. 8(18):4102-4113. doi:10.1002/1521-3765(20020916)8:18¡4102.
  • [6] Oganov AR, Glass CW. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. The Journal of chemical physics, 2006. 124(24). doi:10.1063/1.2210932.
  • [7] Wang Y, Lv J, Zhu L, Lu S, Yin K, Li Q, Wang H, Zhang L, ma Y. Materials discovery via CALYPSO methodology. Journal of physics. Condensed matter : an Institute of Physics journal, 2015. 27:203203. doi:10.1088/0953-8984/27/20/203203.
  • [8] Oganov AR. Crystal structure prediction: reflections on present status and challenges. Faraday Discuss., 2018. 211:643-660. doi:10.1039/C8FD90033G.
  • [9] Barahona F. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 1982. 15(10):3241-3253. doi:10.1088/0305-4470/15/10/028.
  • [10] Wille LT, Vennik J. Computational complexity of the ground-state determination of atomic clusters. Journal of Physics A: Mathematical and General, 1985. 18(8):L419-L422. doi:10.1088/0305-4470/18/8/003.
  • [11] Krishnamoorthy M, Deo N. Node-Deletion NP-Complete Problems. SIAM Journal on Computing, 1979. 8(4):619-625.
  • [12] Yannakakis M. Node-Deletion Problems on Bipartite Graphs. SIAM Journal on Computing, 1981. 10(2):310-327. doi:10.1137/0210022.
  • [13] Yannakakis M. Node-and edge-deletion NP-complete problems. In: Conference record of the tenth annual ACM Symposium on Theory or Computing (STOC), ACM. 1978 pp. 253-264.
  • [14] Faber F, Lindmaa A, von Lilienfeld OA, Armiento R. Crystal structure representations for machine learning models of formation energies. International Journal of Quantum Chemistry, 2015. 115(16):1094-1101. doi:10.1002/qua.24917.
  • [15] Collins C, Dyer M, Pitcher M, Whitehead G, Zanella M, Mandal P, Claridge J, Darling G, Rosseinsky M. Accelerated discovery of two crystal structure types in a complex inorganic phase field. Nature, 2017. 546(7657):280. doi:10.1038/nature22374.
  • [16] Cerioli MR, Faria L, Ferreira TO, Protti F. A note on maximum independent sets and minimum clique partitions in unit disk graphs and penny graphs: complexity and approximation. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, 2011. 45(3):331-346.doi:10.1051/ita/2011106.
  • [17] Clark BN, Colbourn CJ, Johnson DS. Unit disk graphs. Discrete Mathematics, 1990. 86(1):165-177. doi:10.1016/0012-365X(90)90358-O.
  • [18] Altschuler JM, Boix-Adsera E. Hardness results for Multimarginal Optimal Transport problems. 2020. 2012.05398.
  • [19] Altschuler JM, Boix-Adser`a E. Hardness results for Multimarginal Optimal Transport problems. Discrete Optimization, 2021. 42:100669. doi:https://doi.org/10.1016/j.disopt.2021.100669.
  • [20] Buckingham RA. The classical equation of state of gaseous helium, neon and argon. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1938.
  • [21] Pisinger D. Linear time algorithms for knapsack problems with bounded weights. Journal of Algorithms, 1999. 33(1):1-14. doi:10.1006/jagm.1999.1034.
  • [22] Axiotis K, Tzamos C. Capacitated Dynamic Programming: Faster Knapsack and Graph Algorithms, 2018.1802.06440.
  • [23] Håstad J. Clique is hard to approximate within n-e. Acta Mathematica, 1999. 182(1):105-142. doi:10.1007/BF02392825.
  • [24] Garey M, Johnson D. The Rectilinear Steiner Tree Problem is $NP$-Complete. SIAM Journal on Applied Mathematics, 1977. 32(4):826-834. doi:10.1137/0132071.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6fc63cbc-38c0-4b39-897c-1969143d25bb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.