Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | Vol. 29, Fasc. 2 | 297--308
Tytuł artykułu

On relations between Urbanik and Mehler semigroups

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is shown that operator-selfdecomposable measures or, more precisely, their Urbanik decomposability semigroups induce generalized Mehler semigroups of bounded linear operators. Moreover, those semigroups can be represented as random integrals of operator valued functions with respect to stochastic Lévy processes. Our Banach space setting is in contrast with the Hilbert spaces on which so far and most often the generalized Mehler semigroups were studied. Furthermore, we give new proofs of the random integral representation.
Wydawca

Rocznik
Strony
297--308
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
  • Institute of Mathematics, University of Wrocław, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland, zjjurek@math.uni.wroc.pl
Bibliografia
  • [1] D. Applebaum, Martingale-valued measures, Ornstein-Uhlenbeck processes with jumps and operator self-decomposability in Hilbert spaces, in: Séminaire de Probabilités, Vol. 39, Lecture Notes in Math. No 1874, Springer 2005, pp. 171-196.
  • [2] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York 1980.
  • [3] V. I. Bogachev, M. Roeckner and B. Schmuland, Generalized Mehler semigroups and applications, Probab. Theory Related Fields 105 (1996), pp. 193-225.
  • [4] A. Chojnowska-Michalik, Stationary distributions for 1-dimensional linear equations with general noise, Lecture Notes in Control and Inform. Sci. 69 (1985), pp. 14-25.
  • [5] A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochastics 21 (1987), pp. 252-286.
  • [6] M. Fuhrman and M. Roeckner, Generalized Mehler semigroups: the non-Gaussian case, Potential Anal. 12 (2000), pp. 1-47.
  • [7] K. H. Hofmann and Z. J. Jurek, Some analytic semigroups occurring in probability theory, J. Theoret. Probab. 9 (3) (1996), pp. 745-763.
  • [8] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, Berlin 1987.
  • [9] Z. J. Jurek, An integral representation of operator-selfdecomposable random variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (7-8) (1982), pp. 385-393.
  • [10] Z. J. Jurek, Limit distributions and one-parameter groups of linear operators on Banach spaces, J. Multivariate Anal. 13 (4) (1983), pp. 578-604.
  • [11] Z. J. Jurek, Random integral representations for classes of limit distributions similar to Lévy class L0, Probab. Theory Related Fields 78 (1988), pp. 473-490.
  • [12] Z. J. Jurek, Measure valued cocycles from my papers in 1982 and 1983 and Mehler semigroups, www.math.uni.wroc.pl/_zjjurek.
  • [13] Z. J. Jurek and J. D. Mason, Operator-limit Distributions in Probability Theory, Wiley, New York 1993.
  • [14] Z. J. Jurek and W. Vervaat, An integral representation for selfdecomposable Banach space valued random variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete 62 (1983), pp. 247-262.
  • [15] Z. H. Li, Skew convolution semigroups and related immigration processes, Theory Probab. Appl. 46 (2002), pp. 274-296.
  • [16] W. Linde, Probability in Banach Spaces - Stable and Infinite Divisible Distributions, Wiley, New York 1986.
  • [17] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York-London 1967.
  • [18] B. Schmuland and W. Sun, On equation μt+s =μs * Tsμt, Statist. Probab. Lett. 52 (2001), pp. 183-188.
  • [19] K. Urbanik, Lévy’s probability measures on Euclidean spaces, Studia Math. 44 (1972), pp. 119-148.
  • [20] K. Urbanik, Lévy’s probability measures on Banach spaces, Studia Math. 63 (1978), pp. 283-308.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6f9df4aa-19b1-4860-a594-cb630a557009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.