Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 77, nr 1 | 24--30
Tytuł artykułu

Individual implants of a loss of palate fragments fabricated using SLM equipment

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to present the new conception of design and manufacturing individual implants of a loss of palate fragments using Selective Laser Melting equipment. Design/methodology/approach: The designed virtual model of scaffolds have been produced in a process of selective laser melting (SLM). For their preparation titanium alloy powder - Ti6Al4V of suitable granulation and shape has been used. Thus obtained scaffolds have been observed in a scanning electron microscope. The structure of the pores is compatible with the shape of a designed unit cell. The outcarried EDS analysis has confirmed the chemical composition of the tested material. Findings: In the framework of research innovative porous biomimetic materials called scaffolds with the well-defined regular structure of open pores have been used. Virtual implant models have been made using Computer Aided Materials Design. They have the geometrical dimensions corresponding to a fragment of a loss of a human palate. Porous and regular structure with defined geometric dimensions and shape are designed in the form of the unit cell, which has then been subjected to the multiplication process. Practical implications: The scaffolds fabricated in the SLM process create conditions for their application as implants of a loss of palate fragments. Originality/value: Implants for the whole palate or its part, required due to mechanical injuries, tumorous diseases or cleft palate are original at the basis of a literature review.
Wydawca

Rocznik
Strony
24--30
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] A. Nouri, P.D. Hodgson, C. Wen, Biomimetic Porous Titanium Scaffolds for Orthopedic and Dental Applications, Biomimetics, Learning from Nature, Australia (2010) 415-450.
  • [2] Y. Wang, Y. Shen, Z. Wang, J. Yang, et al., Development of highly porous titanium scaffolds by selective laser melting, Materials Letters 64 (2010) 674-676.
  • [3] G. Ryan, A. Pandit, D.P. Apatsidis, Fabrication methods of porous metals for use in orthopaedic applications, Biomaterials 27 (2006) 2651-2670.
  • [4] S.J. Simske, R.A. Ayers, T.A. Bateman, Porous materials for bone engineering, Materials Science Forum 250 (1997) 151-182.
  • [5] L.M.R. de Vasconcellos, M.V. de Oliveira, M.L. de Alencastro Graça, Porous Titanium Scaffolds Produced by Powder Metallurgy for Biomedical Applications, Materials Research 11/3 (2008) 275-280.
  • [6] M. Bram, H. Schiefer, D. Bogdanski, M. Köller, H.P. Buchkremer, D. Stöver, Implant surgery: How bone bonds to PM titanium? Metal Powder Report 61 (2006) 26-31.
  • [7] L.S. Bertol, W.K. Júnior, F.P. da Silva, C.A. Kopp, Medical design: Direct metal laser sintering of Ti-6Al4V, Materials and Design 31 (2010) 3982-3988.
  • [8] W. Xue, B.V. Krishna, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomaterialia 3 (2007) 1007-1018.
  • [9] A. Bansiddhi, D.C. Dunand, Shape-memory NiTi foams produced by solid-state replication with NaF, Intermetallics 15 (2007) 1612-1622.
  • [10] M. Klimek, The use of SLS technology in making permanent dental restorations, Prosthetics 12 (2012) 47-55 (in Polish).
  • [11] L. Ciocca, M. Fantini, F. De Crescenzio, G. Corinaldesi, R. Scott, Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches, Medical and Biological Engineering and Computing, 49 (2011) 1347-1352.
  • [12] P.A. Mazzoli, Selective laser sintering in biomedical engineering, Medical & Biological Engineering & Computing 51 (2013) 245-256.
  • [13] A. Bandyopadhyay, F. Espana , V.K. Balla , S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo responseof Ti6Al4V implants, Acta Biomaterialia 6 (2010) 16401648.
  • [14] S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, et al., The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomateralia 8/7 (2012) 2824-2834, doi: 10.1016/j.actbio.2012.04.001.
  • [15] I.V. Shishkovsky, V. Scherbakov, Selective laser sintering of biopolymers with micro and nano ceramic additives for medicine Physics Procedia 39 (2012) 491-499.
  • [16] L.A. Dobrzański, Overview and general ideas of the development of constructions, materials, technologies and clinical applications of scaffolds engineering for regenerative medicine, Archives of Materials Science and Engineering 69/2 (2014) 53-80.
  • [17] A. Kaźnica, R. Joachimiak, T. Drewa1, T. Rawo, J. Deszczyński, New trends in tissue engineering, Artroskopia i Chirurgia Stawów, 3/3 (2007) 11-16.
  • [18] R. Nieborak, D. Rolski, E. Mierzwińska-Nastalska, J. Kostrzewska-Janicka, S. Starościak, Prosthetic rehabilitation of patients with soft palate defects following surgery of neoplasms in the maxillofacial region: A case report, Prosthodontic LX/1 (2010) 50-54.
  • [19] B. Borsuk-Nastaj, M. Młynarski, Selective laser melting (SLM) technique in fixed prosthetic restorations, Prosthodontic LXII/3 (2010) 203-210.
  • [20] N. Evans, E. Gentelman, J. Polak, Scaffolds for stem cells, Materials Today, 9/12 (2006) 26-33.
  • [21] S. Padilla, S. Sanchez-Salcedo, M. Vallet-Regi, Bioactive glass as precursor of designed architecture scaffolds for tissue engineering, Journal of Biomedical Materials Research Part A 81 (2006) 224-232.
  • [22] M. Schieker, H. Seitz, I. Drosse, S. Seitz, W. Mutschler, Biomaterials as scaffold for bone tissue engineering. European Journal of Trauma, 32 (2006) 114-124.
  • [23] L. Lu, J. Fuh, Y. Wong, Laser Induseed Materials and Processes for Rapid Prototyping, Kluwer Publishers, Dordrecht, 2001.
  • [24] S. Kumar, Selective Laser Sintering: A Qualitative and Objective Approach, Modeling and Characterization 55/10 (2003) 43-47.
  • [25] M. Miecielica, Rapid Prototyping Technologies, Przegląd Mechaniczny 2 (2010) 39-45 (in Polish).
  • [26] International project entitled “Investigations of structure and properties of newly created porous biomimetic materials fabricated by selective laser sintering BIOLASIN” headed by Prof. L.A. Dobrzański funded by the Polish National Science Centre under the decision DEC-2013/08/M/ST8/ 00818.
  • [27] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik, The novel composite consisting of a metallic scaffold, manufactured using a computer aided laser method, coated with thin polymeric surface layer for medical applications, Patent application no. P.411689, Polish Patent Office, 23.03.2015.
  • [28] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Fabrication Of Scaffolds From Ti6Al4V Powders Using The Computer Aided Laser Method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070.
  • [29] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective Laser Sintering and Melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6f0e3b2c-2d77-43c1-a1e9-220d99d65832
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.