Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Currently, electrochemical energy storage systems mostly focus on lithiumion batteries; especially in the field of portable electronics and electric transportation. Nevertheless, it is expected that the exponential growth of these markets and limited lithium resources will increase the price of lithium-based energy storage systems. To meet growing demands in terms of green and sustainable electric power storage, alternative electrochemical technologies towards post lithium-ion batteries are required. Design/methodology/approach: In the present study, polymer electrolytes based on poly(oxyethylene) (POE) and Na-TFS (NaCF3SO3) were developed to be used in solventfree batteries. Electrolytes were prepared using two methodologies: (i) a green-chemistry approach based on lyophilization combined with hot-pressing and (ii) the film-casting method. Findings: Advantages and limitations of both approaches were investigated by several characterization techniques (morphology, thermal and conductivity studies). Using lyophilization/hot-pressing, waste and chemical derivatives production is prevented (Green Chemistry approach) and uniform and porous-free films with controllable thickness and improved mechanical properties are achievable. Research limitations/implications: Further work regarding the development and application of novel polymer backbones is necessary to reach performances comparable to lithium-based polymer electrolytes in terms of electrical properties (conductivity). Originality/value: This work is in total agreement with the current need of developing alternative materials towards sustainable and environmental friendly post lithium-ion batteries. This global aspiration is supported by the recent re-emerging focus on sodium-ion batteries.
Rocznik
Tom
Strony
72--79
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Materials Science and Engineering Department, University Carlos III of Madrid, Spain
autor
- Materials Science and Engineering Department, University Carlos III of Madrid, Spain
- LEPMI, Laboratoire d’Ionique et d’Electrochiemie du Solide, associé au CNRS,PHELMA-Grenoble INP, France
autor
- Materials Science and Engineering Department, University Carlos III of Madrid, Spain
autor
- Materials Science and Engineering Department, University Carlos III of Madrid, Spain, alvar@ing.uc3m.es
Bibliografia
- [1] R.G. Linford (Ed), Electrochemical Science and Technology of Polymers, Vol. 1, Elsevier Applied Science, London, 1987.
- [2] D.K. Pradhan, B.K. Samantaray, R.N.P. Choudhary, A.K. Thakur, Effect of plasticizer on microstructure and electrical properties of a sodium ion conducting composite polymer electrolyte, Ionics 11 (2005) 95-102.
- [3] N. Ahad, E. Saion, E. Gharibshahi, Structural, Thermal, and Electrical Properties of PVA-Sodium Salicylate Solid Composite Polymer Electrolyte, Journal of Nanomaterials 2012 (2012) 1.
- [4] L. Assumma, H.D. Nguyen, C. Iojoiu, S. Lyonnard, R. Mercier, E. Espuche, Effects of Block Length and Membrane Processing Conditions on the Morphology and Properties of Perfluorosulfonated Poly(arylene ether sulfone) Multiblock Copolymer Membranes for PEMFC, ACS Applied Materials & Interfaces 7 (2015) 13808-13820.
- [5] K. Kesavan, C.M. Mathew, S. Rajendran, M. Ulaganathan, Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate, Materials Science and Engineering B 184 (2014) 26-33.
- [6] R. Leones, C.M. Costa, A.V. Machado, J.M.S.S. Esperança, M.M. Silva, S. Lanceros-Mendez, Development of solid polymer electrolytes based on poly(vinylidene fluoride-trifluoroethylene) and the[N-1 1 1 2(OH)][NTf2] ionic liquid for energy storage applications, Solid State Ionics 253 (2013) 143-150.
- [7] M. Chintapalli, X.C. Chen, J.L. Thelen, A.A. Teran,X. Wang, B.A. Garetz, N.P. Balsara, Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte, Macromolecules 47 (2014) 5424-5431.
- [8] K.I. Izutsu, N. Aoyagi, Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions, International Journal of Pharmaceutics 288 (2005) 101-108.
- [9] P. Nanda, S.K. De, S. Manna, U. De, S. Tarafdar, Effect of gamma irradiation on a polymer electrolyte: Variation in crystallinity, viscosity and ion-conductivity with dose, Nuclear Instruments and Methods in Physics Research Section B: beam Interactions with Materials and Atoms 268 (2010) 73-78.
- [10] M. Hema, S. Selvasekerapandian, G. Hirankumar, A. Sakunthala, D. Arunkumar, H. Nithya, Structural and thermal studies of PVA:NH4I, Journal of Physics and Chemistry of Solids 70 (2009) 1098-1103.
- [11] A. Roy, A. Parveen, R. Deshpande, R. Bhat, A. Koppalkar, Microscopic and dielectric studies of ZnO nanoparticles loaded in ortho-chloropolyaniline nanocomposites, Journal of Nanoparticle Research 15 (2013) 1-11.
- [12] F.B. Dias, L. Plomp, J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, Journal of Power Sources 88 (2000) 169-191.
- [13] M. Morita, N. Yoshimoto, S. Yakushiji, M. Ishikawa, Rechargeable magnesium batteries using a novel polymeric solid electrolyte, Electrochemical and Solid State Letters 4 (2001) A177-A179.
- [14] R.C Agrawal, G.P. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, Journal of Physics D-Applied Physics 41 (2008) 1-12.
- [15] M. Patel, K.G. Chandrappa, A.J. Bhattacharyya, Increasing ionic conductivity of polymer-sodium salt complex by addition of a non-ionic plastic crystal, Solid State Ionics 181 (2010) 844-848.
- [16] A. Bhide, J. Hofmann, A.K. Dürr, J. Janek, P. Adelhelm, Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2, Physical Chemistry Chemical Physics 16 (2014) 1987-1996.
- [17] H. Kunteppa, H.G.H. Kumar, A. Parveen, K.R. Anilkumar, A.S. Roy, Electrochemical Studies of Poly(ethylene oxide)-Sodium Perchlorate Composite for Battery Application, Journal of Advanced Physics 2 (2013) 270-275.
- [18] M. Chintapalli, X.C. Chen, J.L. Thelen, A.A. Teran, X. Wang, B.A. Garetz, N.P. Balsara, Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte, Macromolecules 47 (2014) 5424-5431.
- [19] J.S. Moreno, M. Armand, M.B. Berman, S.G. Greenbaum, B. Scrosati, S. Panero, Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization, Journal of Power Sources 248 (2014) 695-702.
- [20] Q. Cheng, Z. Cui, J. Li, S. Qin, F. Yan, J. Li, Preparation and performance of polymer electrolyte based on poly(vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery, Journal of power sources 266 (2014) 401-413.
- [21] G.G. Cameron, M.D. Ingram, M.Y. Qureshi, H.M. Gearing, L. Costa, G. Camino, The thermal-degradation of poly(ethylene oxide) and its complex with NACNS, European Polymer Journal 25 (1989) 779-784.
- [22] B. Bhattacharya, R.K. Nagarale, P.K. Singh, Effect of Sodium-mixed Anion Doping in PEO-based Polymer Electrolytes, High Performance Polymers 22 (2010) 498-512.
- [23] S.A.M. Noor, A. Ahmad, M.Y.A. Rahman, I.A. Talib, Solid Polymeric Electrolyte of the Poly(Ethylene) Oxide-50% Epeoxidized Natural Rubber-Lithium Triflate, Natural Science 2 (2010) 190-196.
- [24] P. Tamilselvi, M. Hema, Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte, Physica B 437 (2014) 53-59.
- [25] J. Malathi, M. Kumaravadivel, G.M. Brahmanandhan, et al., Structural, thermal and electrical properties of PVA-LiCF(3)SO(3) polymer electrolyte, Journal of Non-Crystalline Solids 365 (2010) 2277-2281.
- [26] M. Hema, S. Selvasekerapandian, A. Sakunthala, D. Arunk- umar, H. Nithya, Structural, vibrational and electrical characterization of PVA-NH(4)Br polymer electrolyte system, Physica B-Condensed Matter 403 (2008) 2740-2747.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6ef518d5-a463-4750-bb03-46a8c5b7ae86