Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 47, nr 2 | 149--156
Tytuł artykułu

Influence of the rare-earth elements on the morphology of non-metallic inclusions in microalloyed steels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo-mechanical treatment. Design/methodology/approach: The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo-mechanical treatment. Findings: The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean area 17 μm2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results in a small deformability of non-metallic inclusions during hot-working. Research limitations/implications: Transmission electron microscopy investigations of non-metallic inclusions after initial hot-plastic working is predicted. Practical implications: Introduction of mischmetal in the amount of 2 g per 1 kg of steel causes total modification of chemical composition of non-metallic inclusions. Originality/value: The presence of dispersive, complex modified oxysulfide-type non-metallic inclusions can have advantageous influence on a decrease of grain growth of austenite during hot working similarly as MX interstitial phases. The factors mentioned above should favour the production of forgings with high strength and ductility.
Wydawca

Rocznik
Strony
149--156
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • Division of Constructional and Special Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Polan, marek.opiela@polsl.pl
  • Non-Ferrous Metals Institute, ul. Sowińskiego 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] J. Wypartowicz, D. Podorska, Control of chemical composition of oxide-sulfide inclusions during deoxidation of steel with manganese, silicon and titanium, Metallurgy -Metallurgical Engineering News 3 (2006) 91-96 (in Polish).
  • [2] K. Oikawa, K. Ishida, T. Nishizawa, Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification, ISIJ International 37 (1997) 332-338.
  • [3] F. Ishikawa, T. Takahasi, T. Ochi, Intergranular ferrite nucleation in medium-carbon vanadium steels, Metallurgical and Materials Transaction A 25 (1994) 926-936.
  • [4] M. Qingxian, W. Zhicheng, Z. Yuexian, The mechanism of faults originating from inclusions in the plastic deformation processes of heavy forging, Journal of Materials Processing Technology 123 (2002) 61-66.
  • [5] C. Zhang, Z. Xia, Z. Yang, Z. Liu, Influence of prior austenite deformation and non-metallic inclusions on ferrite formation in low-carbon steels, Journal of Iron and Steel Research 17 (2010) 36-42.
  • [6] B. Beidokhti, A.H. Koukabi, A. Dolati, Effect of titanium addition on the microstructure and inclusion formation in submerged arc welded HSLA pipeline, Journal of Materials Processing Technology 209 (2009) 4027-4035.
  • [7] T. Gladman, The Physical Metallurgy of Microalloyed Steels, Univesity Press Cambridge, 1997.
  • [8] J. Adamczyk, Engineering of Metallic Materials, Silesian University of Technology Publishers, Gliwice, 2004 (in Polish).
  • [9] R. Kiessling, N. Lange, Non metallic inclusions in steel, The Institute of Materials, London, 1997.
  • [10] T. Lis, K. Nowacki, H. Kania, Improvement of steel purity by ladle metallurgy, Metallurgy - Metallurgical Engineering News 10 (2001) 356-361 (in Polish).
  • [11] K. Bolanowski, Effect of rare-earth elements addition on structure and properties of steel, Metallurgy - Metallurgical Engineering News 7-8 (2004) 323-325 (in Polish).
  • [12] A. Grajcar, Modification of non-metallic inlusions by rare-earth elements in low-alloyed C-Mn-Si-Al type steels, Ores and Non-Ferrous Metals 3 (2010) 143-152 (in Polish).
  • [13] A. Grajcar, U. Galisz, L. Bulkowski, Modification of non-metallic inlusions by rare-earth elements in high-manganese austenitic C-Mn-Si-Al type steels, Metallurgy - Metallurgical Engineering News 2 (2011) 178-187 (in Polish).
  • [14] B. Garbarz, A. Żak, J. Wojtas, R. Molenda, The effect of fine particles of nonmetallic inclusions of the austenite grain growth in microalloyed steels, Material Engineering 1 (1999) 5-12 (in Polish).
  • [15] B. Garbarz, The effect of some continuous casting parameters and microalloying elements on the effectiveness of controlling of austenite grain size, Journal of Materials Processing Technology 53 (1995) 147-158.
  • [16] B. Garbarz, J. Marcisz, J. Wojtas, TEM analysis of fine sulfides dissolution and precipitation in steel, Materials Chemistry and Physics 81 (2003) 486-489.
  • [17] H. Kejian, T.N. Baker, Copper containing sulfide phases present in controlled rolled niobium-titanium bearing high strength low alloy steels, Materials Science and Technology 8 (1992) 1082-1089.
  • [18] J. Shim, Y. Oh, J. Suh, Y. Cho, J. Byun, D. Lee, Ferrite nucleation potency of non-meatallic inclusions in medium carbon steels, Acta Materiala 49 (2001) 2115-2122.
  • [19] R.V. Vainola, L.E. Holappa, P.H. Karvonen, Modern steelmaking technology for special steels, Journal of Materials Processing Technology 53 (1995) 453-465.
  • [20] C. Luo, U. Stahlberg, Deformation of inclusions during hot rolling of steel, Journal of Materials Processing Technology 114 (2001) 87-97.
  • [21] N. Wolańska, A.K. Lis, J. Lis, Investigation of C-Mn-B steel after hot deformation, Archives of Materials Science and Engineering 28/2 (2007) 119-125.
  • [22] J. Byun, J. Shim, Y.W. Cho, D.N. Lee, Non-metallic inclusions and intergranular nucleation of ferrite in Ti-killed C-Mn steel, Acta Materiala 51 (2003) 1593-1606.
  • [23] N. Wolańska, A.K. Lis, J. Lis, Microstructure investigation of low carbon steel after hot deformation, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 291-294.
  • [24] T. Pan, Z. Yang, C. Zhang, B. Bai, H. Fang, Kinetics and mechanisms of intergranular on non-metallic inclusions in low carbon steels, Materials Science and Engineering 438-440 (2006) 1128-1132.
  • [25] G. Gigacher, W. Krieger, P.R. Scheller, C. Thomser, Non-metallic inclusion in high-manganese-alloy steels, Steel Research International 9 (2005) 644-649.
  • [26] J. Yang, X. Wang, M. Jiang, W. Wang, Effect of calcium treatment on non-metallic inclusions in ultra-low oxygen refined by high basicity Al2O3 slag, Journal of Iron and Steel Research 18 (2011) 8-14.
  • [27] E. Pessard, F. Morel, A. Morel, D. Bellet, Modeling the role of non-metallic inclusions on the anisotrophic fatigue behavior of forged steel, International Journal of Fatigue 33 (2011) 568-577.
  • [28] J. Adamczyk, Manufacturing of mass-scale products from structural microalloyed steels in integrated production lines, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 399-402.
  • [29] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218-225.
  • [30] A. Grajcar, Hot working in the ϕ+α region of TRIP-aided microalloyed steel, Archives of Materials Science and Engineering 28/12 (2007) 743-750.
  • [31] M. Opiela, Thermo-mechanical treatment of the C-Mn steel with Nb, Ti, V and B microadditions, Archives of Materials Science and Engineering 28/6 (2007) 377-380.
  • [32] L.A. Dobrzański, A. Grajcar, W. Borek, Influence of hot-working conditions on a structure of high-manganese steel, Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 139-142.
  • [33] J. Adamczyk, M. Opiela, Engineering of forged products of microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 15 (2006) 153-158.
  • [34] W. Ozgowicz, M. Opiela, A. Grajcar, E. Kalinowska-Ozgowicz, W. Krukiewicz, Metallurgical products of microalloy constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 44/1 (2011) 7-34.
  • [35] J. Adamczyk, Development of the microalloyed constructional steels, Journal of Achievements in Materials and Manufacturing Engineering 14 (2006) 9-20.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6ed6ac0d-4dc1-48de-be3a-2baffb181ddb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.