Warianty tytułu
Języki publikacji
Abstrakty
In least squares migration (LSM), multiples are usually a type of noise. Although they contain information about underground structures, they also cause artifacts in imaging. Therefore, multiple attenuation is an important way to reduce these artifacts in LSM images. Reweighted least squares reverse time migration (RWLSRTM) can use the weighting matrix and the predicted multiples to eliminate artifacts. Because the LSM provides a high resolution model, we can predict the internal multiples by using high-order Born modeling. The method is based on the inverse scattering series (ISS), and the difference is that it forwards the modeling of the internal multiples in the time domain; the model is constructed by the RWLSRTM. Because this method does not require performing as many Fourier transforms as the ISS method, it requires less calculation. We have applied the predicted multiples in the RWLSRTM to remove the artifacts caused by the multiples. The RWLSRTM image can also serve as a parameter of multiple predictions and can make the results of multiple predictions more accurate. The results of numerical tests using synthetic data show that this method can remove artifacts of internal multiples well. A comparison with the ISS method shows that our method can reduce the calculation.
Czasopismo
Rocznik
Tom
Strony
1491--1505
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun 120026, China, chenrdjlu@qq.com
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun 120026, China, hanliguo@jlu.edu.cn
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun 120026, China
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun 120026, China
autor
- College of Geoexploration Science and Technology, Jilin University, Changchun 120026, China
Bibliografia
- 1. Baysal E, Kosloff D, Sherwood J (1983) Reverse-time migration. Geophysics 48:1514–1524
- 2. Berkhout AJ (2011) Combining full wavefield migration and full waveform inversion. In: 81st SEG annual international meeting, expanded. pp 3321–3325
- 3. Berkhout AJ (2012) Combining full wavefield migration and full waveform inversion, a glance into the future of seismic imaging. Geophysics 77(2):S43–S50
- 4. Berkhout AJ (2014) Review paper: an outlook on the future of seismic imaging Part II: Full-Wavefield Migration. Geophys Prospect 62(5):931–949
- 5. Carvalho FM (1992b) Free-surface multiple reflection elimination method based on non-linear inversion of seismic data. Dissertation, Universidade Federal da Bahia (in Portuguese)
- 6. Carvalho FM, Weglein AB, Stolt RH (1991) Examples of a non-linear inversion method based on the T matrix of scattering theory: application to multiple suppression. In: 61st SEG annual international meeting, expanded. pp 1319–1322
- 7. Carvalho FM, Weglein AB, Stolt RH (1992a) Non-linear inverse scattering for multiple suppression: application to real data, Part I. In: 62nd SEG annual international meeting, expanded. pp 1093–1095
- 8. Claerbout JF (1971) Toward a unified theory of reflector mapping. Geophysics 36(3):467–481
- 9. Claerbout JF (1976) Fundamentals of geophysical data processing. McGraw-Hill Book Co. Inc, New York, NY, USA, pp 1–274
- 10. Claerbout JF (1985) Imaging of the earth’s interior. Blackwell Scientific Publication, Housten, TX, USA, pp 1–412
- 11. Dai W, Wang X, Schuster GT (2011) Least-squares migration of multisource data with a deblurring filter. Geophysics 76(5):R135–R146
- 12. Foster DJ, Mosher CC (1992) Suppression of multiple reflections using the radon transform. Geophysics 57(3):386–395
- 13. Hampson D (1986) Inverse velocity stacking for multiple elimination. In: 56th SEG annual international meeting, expanded. pp 422–424
- 14. He R, Schuster G (2003) Least‐squares migration of both primaries and multiples. In: 73rd SEG annual international meeting. Expanded. pp 1035–1038
- 15. Ikelle Luc T (1999) Using even terms of the scattering series for deghosting and multiple attenuation of ocean-bottom cable data. Geophysics 64(2):579–592
- 16. Ikelle LT (2006) A construct of internal multiples form surface data only: the concept of virtual seismic events. Geophysics 164:383–393
- 17. Ikelle LT (2009) Scattering diagrams in seismic imaging: more insights into the construction of virtual events and internal multiples. J Appl Geophys 67:150–170
- 18. Jakubowicz H (1998) Wave equation prediction and removal of interbed multiples. In: 61st SEG annual international meeting, expanded. pp 1527–1530
- 19. Li C, Huang J, Li Z, Yu H, Wang R (2019) Least-squares migration with primary- and multiple-guided weighting matrices. Geophysics 84(3):S171–S185. https://doi.org/10.1190/geo2018-0038.1
- 20. Li Z, Li Z, Li Q, Li Q, Sun M, Hu P, Li L (2020) Least-squares reverse time migration of multiples in visco-acoustic media. Geophysics 85(5):S285–S297
- 21. Liu X, Liu Y (2018) Plane-wave domain least-squares reverse time migration with free-surface multiples. Geophysics 83(6):S477–S487
- 22. Liu Y, Xu C, Jin D, He R, Sun H, Zheng R (2011a) Reverse time migration of multiples. In: 81st SEG annual international meeting, expanded. pp 3326–3331
- 23. Liu Y, Xu C, Jin D, He R, Sun H, Zheng R (2011b) Reverse time migration of multiples for subsalt imaging. Geophysics 76(5):WB209–WB216
- 24. Liu Y, Liu X, Osen A, Shao Y, Hu H, Zheng Y (2016) Least-squares reverse time migration using controlled-order multiple reflections. Geophysics 81(5):S347–S357
- 25. Liu X, Liu Y, Khan M (2018) Fast least-squares reverse time migration of VSP free-surface multiples with dynamic phase-encoding schemes. Geophysics 83(4):S321–S332
- 26. McMechan G (1983) Migration by extrapolation of time-dependent boundary values. Geophys Prospect 31:413–420
- 27. Matson KH (1996) The relationship between seattering theory and the primaries and multiples of refiection seismic data. J Seismi Explor 5(1):63–78
- 28. Matson KH (1997) An inverses scattering series method for attenuating elastic multiples from multicomponent land ocean bottom seismic data. Ph.D. Dissertation, Dept. EOAS, British Columbia Univ BC, Canada
- 29. Nemeth T, Wu C, Schuster GT (1999) Least-squares migration of incomplete reflection data. Geophysics 64(1):208–221
- 30. Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 35:773–782
- 31. Pica A, Delmas L (2008) Wave equation based internal multiple modeling in 3D. In: 78th SEG annual international meeting, expanded. pp 2476–2480
- 32. Qu Y, Huang C, Li LC, Z, (2021) Full-path compensated least-squares reverse time migration of joint primaries and different-order multiples for deep-marine environment. IEEE Trans Geosci Remote Sens 59(8):7109–7121
- 33. Ramírez AC, Weglein AB (2005) An inverse scattering internal multiple elimination method: beyond attenuation, a new algorithm, and initial tests. In: 75th SEG annual international meeting, expanded. pp 2115–2118
- 34. Tarantola A (1984) Linearized inversion of seismic reflection data*. Geophys Prospect 32(6):998–1015
- 35. Tu N, Herrmann FJ (2015) Fast imaging with surface-related multiples by sparse inversion. Geophys J Int 201(1):304–317
- 36. van der Neut J, Wapenaar K (2016) Adaptive overburden elimination with the multidimensional marchenko equation. Geophysics 81(5):T265–T284. https://doi.org/10.1190/geo2016-0024.1
- 37. Verschuur DJ, Berkhout AJ (2005) Removal of internal multiples with the common- focus-point (CFP) approach: part 2—Application strategies and data examples. Geophysics 70(3):V61-72
- 38. Weglein AB (1999) Multiple attenuation: an overview of recent advances and the road ahead. Lead Edge 18(1):40–44
- 39. Weglein AB, Gasparotto EA, Carvalho PM, Stolt RH (1997) An inverse-scattering series method for attenuating multiples in seismic reflection data. Geophysics 62(6):1975–1989
- 40. Wong M, Biondi B, Ronen S (2015) Imaging with primaries and free-surface multiples by joint least-squares reverse time migration. Geophysics 80(6):S223–S235
- 41. Yuan S, Wang S, Yuan F, Liu Y (2018) The influence of errors in the source wavelet on inversion-based surface-related multiple attenuation. Geophys Prospect 66:55–73
- 42. Zhang D, Schuster GT (2014) Least-squares reverse time migration of multiples. Geophysics 79(1):S11–S21
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6eb6e3cd-68f6-4d91-ac14-312a00bd416a