Czasopismo
2018
|
Vol. 162, nr 1
|
1--15
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
One of the most sensitive characteristics of network vulnerability is residual closeness. Calculating the closeness and the residual closeness of larger graphs is a time consuming and operations heavy process. In this article, we try to mitigate the process for thorn graphs-we present the thorn graphs residual closeness as a function of the closeness and the residual closeness of the original graphs.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1--15
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Pactera Technologies, Redmond, WA, USA, dangalchev@hotmail.com
Bibliografia
- [1] Chvatal V. Tough graphs and Hamiltonian circuits. Discrete Math, 1973. 5(3):215-228. URL https://doi.org/10.1016/0012-365X(73)90138-6.
- [2] Jung H A. On a class of posets and the corresponding comparability graphs. J. Combin. Theory, B, 1978. 24(2):125-133. URL https://doi.org/10.1016/0095-8956(78)90013-8.
- [3] Woodall D R. The binding number of a graph and its Anderson number. J. Combin. Theory, B, 1973. 15(3):225-255. URL https://doi.org/10.1016/0095-8956(73)90038-5.
- [4] Barefoot C A, Entringer R, Swart H. Vulnerability in graphs - a comparative Survey. J. Combin. Math. Combin. Comput., 1987. 1(38):13-22.
- [5] Dangalchev Ch. Residual closeness in networks. Phisica A, 2006. 365(2):556-564. URL https://doi.org/10.1016/j.physa.2005.12.020.
- [6] Krishnamoorthy M, Krishnamurty B. Fault diameter of interconnection networks. Comput. Math. Appl., 1987. 13(5-6):577-582. URL https://doi.org/10.1016/0898-1221(87)90085-X.
- [7] Yin J H, Li J S, Chen G L, Zhong C. On the fault-tolerant diameter and wide diameter of ω-connected graphs. Networks, 2005. 45(2):88-94.
- [8] Erves R, Zerovnik J. Mixed fault diameters of Cartesian graph bundles. Discrete applied mathematics, 2013. 161(12): 1726-1733. URL https://doi.org/10.1016/j.dam.2011.11.020.
- [9] Gutman I. Distance in thorny graph. Publ. Inst. Math. (Beograd), 1998. 63:31-36. ISSN:0350-1302.
- [10] Bonchev D, Klein D. On the Wiener number of thorn trees, stars, rings, and rods. Croatica chemica ACTA, 2002. 75(2):613-620. URL https://hrcak.srce.hr/127540.
- [11] Dangalchev Ch. Residual closeness and generalized closeness. IJFCS, 2011. 22(8):1939-1947. URL https://doi.org/10.1142/S0129054111009136.
- [12] Deutsch E, Klavzar S. Computing the Hosoya polynomial of graphs from primary subgraphs. Match Commun. Math. Comput. Chem., 2013. 70:627-644. ISSN:0340-6253.
- [13] Aytac A, Odabas Z.N. Residual closeness of wheels and related networks. IJFCS, 2011. 22(5):1229-1240. URL https://doi.org/10.1142/S0129054111008660.
- [14] Odabas Z.N, Aytac A. Residual closeness in cycles and related networks. Fundamenta Informaticae, 2013. 124(3): 297-307. doi:10.3233/FI-2013-835.
- [15] Turaci T, Okten M. Vulnerability of Mycielski graphs via residual closeness. Ars Combinatoria, 2015. 118: 419-427.
- [16] Aytac A, Berberler Z.N.O. Robustness of Regular Caterpillars. IJFCS, 2017. 28(7): 835-841. URL https://doi.org/10.1142/S0129054117500277.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6e765624-4797-455c-95ba-50aaf28f0a57