Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 47, nr 1 | 56--68
Tytuł artykułu

Uniformly continuous superposition operators in the space of functions of bounded n-dimensional Φ-variation

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that if a superposition operator maps a subset of the space of all metric-vector-space-valued-functions of bounded n-dimensional Φ-variation into another such space, and is uniformly continuous, then the generating function of the operator is an affine function in the functional variable.
Wydawca

Rocznik
Strony
56--68
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
  • Departamento De Matemáticas, Universidad Centroccidental Lisandro Alvarado Barquisimeto, Venezuela, jereu@ucla.edu.ve
autor
  • Departamento De Matemáticas, Universidad De Los Andes Mérida, Venezuela, jgimenez@ula.ve
autor
  • Escuela De Matemáticas, Universidad Central De Venezuela Caracas, Venezuela, nmerucv@gmail.com
Bibliografia
  • [1] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operator, Cambridge University Press, New York, 1990.
  • [2] V. V. Chistyakov, Functions of several variables of finite variation and superposition operators, in: Real Analysis Exchange 26th Summer Symposium, Lexington, VA, USA, 2002, pp. 61–66.
  • [3] V. V. Chistyakov, A selection principle for mappings of bounded variation of several variables, in: Real Analysis Exchange 27th Summer Symposium, Opava, Czech Republic, 2003, pp. 217–222.
  • [4] V. V. Chistyakov, Y. Tretyachenko, Maps of several variables of finite total variation and Helly-type selection principles, J. Math. Anal. Appl. 370(2) (2010), 672–686.
  • [5] J. A. Clarkson, C. R. Adams, On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. 35 (1933), 824–854.
  • [6] T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York and London, 1963.
  • [7] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Polish Scientific Editors and Silesian University, Warszawa, Kraków, Katowice, 1985.
  • [8] K. Lichawski, J. Matkowski, J. Mi`s, Locally defined operators in the space of differentiable functions, Bull. Polish Acad. Sci. Math. 37 (1989), 315–125.
  • [9] J. Matkowski, Uniformly continuous superposition operators in the space of bounded variation functions, Math. Nachr. 283(7) (2010), 1060–1064.
  • [10] F. A. Talalyan, A multidimensional analogue of a theorem of F. Riesz, Sbornik: Mathematics 186(9) (1995), 1363–1374.
  • [11] G. Vitali, Sui gruppi di punti e sulle funzioni di variabili reali, Atti Accad. Sci. Torino 43 (1908), 75–92.
  • [12] M. Wróbel, Representation theorem for local operators in the space of continuous and monotone functions, J. Math. Anal. Appl. 372 (2010), 45–54.
  • [13] M. Wróbel, Locally defined operators in the Hölder spaces, Nonlinear Anal. 74 (2011), 317–323.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6e535935-5aef-4348-9c29-679910d76ded
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.