Czasopismo
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Zastosowanie technologii natrysku cieplnego w powłokach antykorozyjnych: krótki przegląd
Języki publikacji
Abstrakty
Despite the significant progress in the field of anticorrosion protection, this area of materials science is still an important issue that should be developed due to the constantly shrinking natural resources or increasing environmental awareness. Because of the high recycling potential and the relatively environmentally friendly profile, thermal spray processes enjoy the unabated interest in industrial anticorrosion. This article presents the most important methods of obtaining ceramic and metal protective coatings with the use of thermal spray technology, together with a discussion of the key areas of their application.
Pomimo znaczącego postępu w dziedzinie zabezpieczeń antykorozyjnych, niniejszy obszar materiałoznawstwa wciąż stanowi istotne zagadnienie nad którym – przez wzgląd na stale kurczące się zasoby naturalne, czy też wzrastającą świadomość ekologiczną – należy się pochylić. Z uwagi na wysoki potencjał recyklingowy oraz stosunkowo przyjazny dla środowiska profil, procesy natryskiwania cieplnego cieszą się niesłabnącym zainteresowaniem w antykorozji przemysłowej. W poniższym artykule przybliżono najważniejsze metody konstytuowania ceramicznych i metalowych powłok ochronnych z wykorzystaniem technologii natrysku cieplnego wraz z omówieniem kluczowych obszarów aplikacyjnych tychże.
Czasopismo
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr.48 poz., rys., wykr.
Twórcy
autor
- Sieć Badawcza Łukasiewicz – Instytut Metali Nieżelaznych, Centrum Materiałów Proszkowych i Kompozytowych, Gliwice
autor
- Sieć Badawcza Łukasiewicz – Instytut Inżynierii Materiałów Polimerowych i Barwników, Centrum Farb i Tworzyw, Gliwice
Bibliografia
- [1] Tomasz Szulc. 2013. “Notatki z historii natryskiwania termicznego”. Przegląd Spawalnictwa. 85(6).
- [2] Katica Simunovic. 2010. “Thermal Spraying”. Welding Engineering And Technology. Oxford: Eolss Publishers.
- [3] Samantha Wijewardane. 2015. “Thermal spray coatings in renewable energy applications”. Future Development of Thermal Spray Coatings.
- [4] Joseph R. Davis. 2004. “Handbook of Thermal Spray Technology”. ASM International.
- [5] Nuria Espallargas. 2015. “Future Development of Thermal Spray Coatings: Types, Designs, Manufacture and Applications”. Woodhead Publishing.
- [6] Lech Pawlowski. 2008. “The Science and Engineering of Thermal Spray Coatings”. John Wiley & Sons, Ltd.
- [7] Pierre L. Fauchais, J. V. R. Heberlein, M. I. Boulos. 2014. “Thermal Spray Fundamentals From Powder to Part”. Springer, Boston, MA.
- [8] Jimmy Mehta, V. K. Mittal, P. Gupta. 2017. “Role of Thermal Spray Coatings on Wear, Erosion and Corrosion Behavior: A Review”. Journal of Applied Science and Engineering. 20 (4):445-452.
- [9] Sahar A. Galedari, A. Mahdavi, F. Azarmi, Y. Huang, A. McDonald. 2019. “A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures”. Journal of Thermal Spray Technology. 28:645–677.
- [10] Shrikant Joshi. 2020. “Advances in Thermal Spray Technology”. Materials.13(16).
- [11] T. S. Sidhu, S. Prakash, R.D. Agrawal. 2005. “State of the Art of HVOF Coating Investigations - A Review”. Marine Technology Society Journal. 39(2):53-64.
- [12] S. L. Wang, H. X. Li, S. Y. Hwang, S. D. Choi, S. Yi. 2012. “Corrosion Behaviors of Coatings Fabricated Using Bulk Metallic Glass Powders with the Composition of Fe68.5C7.1Si3.3B5.5P8.7Cr2.3Mo2.5Al2”. Metals and Materials International. 18:607-612.
- [13] Shan-Lin Wang, J. C. Cheng. S. H. Yi, L. M. Ke. 2014. “Corrosion resistance of Fe-based amorphous metallic matrix coating fabricated by HVOF thermal spraying”. Transactions of Nonferrous Metals Society of China. 24:146-151.
- [14] Alin C. Murariu, N. Pleşu, I. A. Perianu, M. Tară-Lungă-Mihali. 2017. “Investigations on Corrosion Behaviour of WC–CrC–Ni Coatings Deposited by HVOF Thermal Spraying Process”. International Journal of Electrochemical Science. 12:1535-1549.
- [15] Ioana Csaki, K. R. Ragnasdottir, A. Buzaianu, K. Leosson,V. Motoiu, S. Guðlaugsson, M. V. Lungu, H. O. Haraldsdottir, S. N. Karlsdottir. 2018. “Nickel-based coatings used for erosion-corrosion protection in a geothermal environment”. Surface & Coatings Technology. 350:531–541.
- [16] Sonia García-Rodríguez, A. J. López, V. Bonache, B. Torres, J. Rams. 2020. “Fabrication, Wear, and Corrosion Resistance of HVOF Sprayed WC-12Co on ZE41 Magnesium Alloy”. Coatings. 10.
- [17] Hetian Chi, M. A. Pans, M. Bai, C. Sun, T. Hussain, W. Sun, Y. Yao, J. Lyu, H. Liu. 2021. “Experimental investigations on the chlorine-induced corrosion of HVOF thermal sprayed Stellite-6 and NiAl coatings with fluidised bedbiomass/anthracite combustion systems”. Fuel. 288: 119607.
- [18] Marzie Mardalia, H. R. SalimiJazi, F. Karimzadeh, B. Luthringer, C. Blawert, S. Labbaf. 2019. “Comparative study on microstructure and corrosion behav- ior of nanostructured hydroxyapatite coatings deposited by high velocity oxygen fuel and flame spraying on AZ61 magnesium based substrates”. Applied Surface Science. 465:614-624.
- [19] J. N. Kumari, N. Jegadeeswaran. 2021. “Development of CNT mixed HVOF coating for water tube boiler material to improve the degradations”. Materials Today: Proceedings.
- [20] Romnick Unabia, R. Candidato, Lech Pawłowski. 2018. “Current Progress in Solution Precursor Plasma Spraying of Cermets: A Review”. Metals. 8 (6):420.
- [21] Singanahally T. Aruna, N. Balaji, J. Shedthi, V. K. W. Grips. 2012. “Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings”. Surface & Coatings Technology. 208:92-100.
- [22] Avanasiappan Pragatheeswaran, P. V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, V. Chaturvedi, A.Nagaraj, K. Ramachandran. 2015. “Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion”. Surface & Coatings Technology. 265:166-173.
- [23] Guanxiong Liu, X. Geng, H. Pang, X. Li, X. Li, P. Zhu, C. Zhang. 2016. “Deposition of Nanostructured Fluorine-Doped Hydroxyapatite Coating from Aqueous Dispersion by Suspension Plasma Spray”. Journal of American Ceramic Society. 99:2899–2904.
- [24] Renu Kumari, J. D. Majumdar. 2017. “Studies on corrosion resistance and bio-activity of plasma spray deposited hydroxylapatite (HA) based TiO2 and ZrO2 dispersed composite coatings on titanium alloy ( Ti-6Al-4V ) and the same after post spray heat treatment”. Applied Surface Science. 420:935–943.
- [25] Armugam Amudha, H. D. Shashikal, O. S. A. Rahman, A. K. Keshri, H. S. Na- garaj. 2019. “Effect of graphene oxide loading on plasma sprayed alumina-graphene oxide composites for improved anticorrosive and hydrophobic surface”. Surface Topography: Metrology and Properties. 7 (2): 024003.
- [26] Wenrui Wang, W. Qi, L. Xie, X. Yang, J. Li, Y. Zhang. 2019. “Microstructure and Corrosion Behavior of (CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated by Plasma Spraying”. Materials. 12(5).
- [27] Songqiang Huang, J. Zhou, K. Sun, H. Yang, W. Cai, Y. Liu, P. Zhou, S. Wu, H. Li. 2021. “Microstructural Characteristics of Plasma Sprayed NiCrBSi Coatings and Their Wear and Corrosion Behaviors”. Coatings. 11(2).
- [28] Pejman Zamani, Z. Valefi, K. Jafarzadeh. 2022. “Comprehensive study on cor- rosion protection properties of Al2O3, Cr2O3 and Al2O3–Cr2O3 ceramic coatings deposited by plasma spraying on carbon steel”. Ceramics International. 48:1574-1588.
- [29] Daniel Tejero-Martin, M. R. Rad, A. McDonald, T. Hussain. 2019. “Beyond Traditional Coatings: A Review on Thermal-Sprayed Functional and Smart Coatings”. Journal of Thermal Spray Technology. 28:598–644.
- [30] Han-Seung Lee, J. K. Singh, M. A. Ismail, C. Bhattacharya, A. H. Seikh, N. Alharthi, R. R. Hussain. 2019. “Corrosion mechanism and kinetics of Al-Zn coating deposited by arc thermal spraying process in saline solution at prolong exposure periods”. Scientific Reports. 9: 3399.
- [31] Han-Seung Lee, J. K. Singh. 2019. “Influence of calcium nitrate on morphology and corrosion characteristics of ammonium phosphate treated Aluminum coating deposited by arc thermal spraying process”. Corrosion Science. 146:254–268.
- [32] Il-Cho Park, S. J. Kim. 2017. “Corrosion behavior in seawater of arc thermal sprayed Inconel 625 coatings with sealing treatment”. Surface & Coatings Technology. 325:729–737.
- [33] Yaoyao Fu, X. Chen, B. Zhang, Y. Gong, H. Zhang, H. Li. 2018. “Fabrication of nanodiamond reinforced aluminum composite coatings by flame spraying for marine applications”. Materials Today Communications. 17:46–52.
- [34] Teguh E. Saraswati, K. Nugroho, M. Anwar. 2018. “An anticorrosion coating from ball-milled wood charcoal and titanium dioxide using a flame spray method”. International Journal of Technology. 5:983-992.
- [35] Shuai Cui, H. Zhai, W. Li, X. Fan, X. Li, W. Ning, D. Xiong. 2020. “Microstructure and corrosion resistance of Fe-based amorphous coating prepared by detonation spray”. Surface & Coatings Technology. 399: 126096.
- [36] Haimin Zhai, H. Yuan, W. Li, X. Zhang, X. Li, A. Cai. 2022. “Corrosion resist- ance mechanisms of detonation sprayed Fe-based amorphous coating on AZ31B magnesium alloy”. Journal of Non-Crystalline Solids. 576.
- [37] Andreas Momber, T. Marquardt. 2018. “Protective coatings for offshore wind energy devices (OWEAs): a review”. Journal of Coatings Technology and Research. 15.
- [38] Kirsten Bobzin, W. Wietheger, G. Jacobs, D. Bosse, T. Schröder, A. Rolink. 2020. “Thermally sprayed coatings for highly stressed sliding bearings”. Wear. 458-459.
- [39] Esmaeil Sadeghi, N. Markocsan, S. Joshi. 2019. “Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants. Part I: Effect of Composition and Microstructure”. Journal of Thermal Spray Technology. 28:1749-1788.
- [40] Samantha M. Gateman, K. Page, I. Halimi, A. R. C. Nascimento, S. Savoie, R. Schulz, C. Moreau, I. P. Parkin, J. Mauzeroll. 2020. “Corrosion of One-Step Superhydrophobic Stainless-Steel Thermal Spray Coatings”. Applied Materials & Interfaces. 12:1523−1532, 2020.
- [41] Maria Oksa, P. Auerkari, J. Salonen, T. Varis. 2014. “Nickel-based HVOF coatings promoting high temperature corrosion resistance of biomass-fired power plant boilers”. Fuel Processing Technology. 125:236-245.
- [42] Madalina S. Baltatu, P. Vizureanu, A. V. Sandu, C. Munteanu, B. Istrate. 2020. “Microstructural Analysis and Tribological Behavior of Ti-Based Alloys with a Ceramic Layer Using the Thermal Spray Method”. Coatings. 10 (12):1216.
- [43] Chunling Yang, J. Liu, Q. Ren, Y. Liu, P. Zhou, H. Li. 2021. “Development of Novel Thermal Sprayed Hydroxyapatite-Rare Earth (HA-Re) Coatings for Potential Antimicrobial Applications in Orthopedics”. Journal of Thermal Spray Technology. 30:886–897.
- [44] Gurpreet Singha, H. Singhb, B. S. Sidhuc. 2013. “Corrosion behavior of plasma sprayed hydroxyapatite and hydroxyapatite-silicon oxide coatings on AISI 304 for biomedical application”. Applied Surface Science. 284:811– 818.
- [45] Zhengang Duan, H. Yang, S. Kano, K. Murakami, Y. Satoh, Y. Takeda, H. Abe. 2018. “Oxidation and electrochemical behaviors of Al2O3 and ZrO2 coatings on Zircaloy-2 cladding by thermal spraying”. Surface and Coatings Technology. 334:319-327.
- [46] Rakesh Kumar, R. Kumar, S. Kumar. 2018. “Erosion Corrosion Study of HVOF Sprayed Thermal Sprayed Coatings on Boiler Tubes: A Review”. International Journal of Science and Management Studies. 1 (3).
- [47] Dominique Poirier, J. G. Legoux, E. Irissou, D. Gallant, J. Jiang, T. Potter, J. Boileau. 2019. “Performance Assessment of Protective Thermal Spray Coatings for Lightweight Al Brake Rotor Disks”. Journal of Thermal Spray Technology. 28:291-304.
- [48] Ole Ø. Knudsen, H. Matre, C. Dørum, M. Gagné. 2019. “Experiences with Thermal Spray Zinc Duplex Coatings on Road Bridges”. Coatings 9 (6): 371.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6e4274b2-7c30-4c4d-ae31-8d2f44582778