Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | T. 18, z. 3 | 77--88
Tytuł artykułu

Estimating the demand for railway freight transportation: a case study in Kazakhstan

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article focuses on the critical importance of demand estimates for effective planning and decision-making in the railway freight transportation industry. Various departments within transportation companies, including marketing, production, distribution, and finance departments, heavily rely on accurate demand forecasts to make informed decisions. Forecasting demand is a crucial aspect of managing business processes, and the methods for doing this can vary across different industries. The ultimate goal remains consistent - to obtain precise predictions of future demand by analyzing historical data and current environmental factors. In the context of transportation services, accurate demand forecasting is essential for successful operational planning and management of functional areas such as transportation operations, marketing, and finance. The current case study specifically examines the National Company Kazakhstan Temir Zholy (KTZ), a transport and logistics holding engaged in rail transportation in Kazakhstan. KTZ’s main sources of income are related to freight transportation. The volume of cargo transportation (in tons) and the freight turnover play a significant role in assessing demand and forecasting future revenues from freight traffic. Different techniques for demand forecasting are explored, including qualitative and quantitative methods. Qualitative methods rely on judgments and opinions, while quantitative methods utilize historical data or identify causal relationships between variables. Overall, the present study highlights the critical role of demand forecasting in the railway freight transportation industry and its impact on efficient planning and decision-making processes.
Wydawca

Czasopismo
Rocznik
Strony
77--88
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
Bibliografia
  • 1. Punia, S. & Shankar, S. Predictive analytics for demand forecasting: A deep learning-based decision support system. Knowledge-Based Systems. 2022. Vol. 258. No. 109956. DOI: https://doi.org/10.1016/j.knosys.2022.109956.
  • 2. Merkuryeva, G. & Valberga, A. & Smirnov, A. Demand forecasting in pharmaceutical supply chains: A case study. Procedia Computer Science. 2019. Vol. 149. P. 3-10. DOI: https://doi.org/10.1016/j.procs.2019.01.100.
  • 3. Milenković, M. & Švadlenka, L. & Melichar, V. & Bojović, N. & Avramović, Z. SARIMA modelling approach for railway passenger flow forecasting. Transport. 2015. Vol. 33. No. 2. P. 1-8. DOI: https://doi:10.3846/16484142.2016.1139623.
  • 4. Roos, J. & Gavin, G. & Bonnevay, S. A dynamic Bayesian network approach to forecast short-term urban rail passenger flows with incomplete data. Transportation Research Procedia. 2017. No. 26. P. 53-61. DOI: https://doi.org/10.1016/j.trpro.2017.07.008.
  • 5. Zhang, J. & Chen, F. & Shen, Q. Cluster-based LSTM network for short-term passenger flow forecasting in urban rail transit. IEEE Access. 2019. Vol. 7. P. 147653-147671. DOI: https://doi.org/10.1109/ACCESS.2019.2941987.
  • 6. Tang, Q. & Cheng, P. & Li, N. 基于GSO-BPNN方法的城市轨道交通客流短时预测[J]. 2017. 通 信领域的技术与经济(1): 1-4. [In Chinese: Tang, Q., Cheng, P., Li, N. Short time forecasting of passenger flow in urban railway using GSO-BPNN method. Technology & Economy in Areas of Communications. 2017]
  • 7. Намиот, Д.Е. & Покусаев, О.Н. & Лазуткина, В.С. О моделях пассажирского потока для городских железных дорог. International Journal of Open Information Technologies. 2018. Vol. 6. No. 3. P. 9-14. [In Russian: Namiot, D.E. & Pokusaev, O.N. & Lazutkina, V.S. On passenger flow models for urban railways. International Journal of Open Information Technologies].
  • 8. Andersson, M. & Brundell-Freij, K. & Eliasson, J. Validation of aggregate reference forecasts for passenger transport. Transportation Research Part A: Policy and Practice. 2017. Vol. 96. P. 101-118. DOI: https://doi.org/10.1016/j.tra.2016.12.008.
  • 9. Prakaulya, V. & Sharma, R. & Singh, U. & Itare, R. Railway passenger forecasting using time series decomposition model. In: 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA). 20-22 April 2017. Coimbatore, India. P. 554-558.
  • 10. Markovits-Somogyi, R. Measuring efficiency in transport: the state of the art of applying data envelopment analysis. Transport. 2011. Vol. 26. No. 1. P. 11-19. DOI: https://doi.org/10.3846/16484142.2011.555500.
  • 11. Banerjee, N. & Morton, A. & Akartunalı, K. Passenger demand forecasting in scheduled transportation. European Journal of Operational Research. 2020. Vol. 286. No. 3. P. 797-810. DOI: https://doi.org/10.1016/j.ejor.2019.10.032.
  • 12. Borucka, A. & Mazurkiewicz, D. & Lagowska, E. Mathematical modelling as an element of planning rail transport strategies. Transport. 2021. Vol. 36. No. 4. P. 354-363. DOI: https://doi.org/10.3846/transport.2021.16043.
  • 13. Bermúdez, J.D. & Segura, J.V. & Vercher, E. Holt-Winters forecasting: an alternative formulation applied to UK air passenger data. Journal of Applied Statistics. 2007. Vol. 34. No. 9. P. 1075-1090.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6df5d31c-dded-482b-aa3e-879844c56a2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.