Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | 298--304
Tytuł artykułu

Simulations of Heat Transfer through Multilayer Protective Clothing Exposed to Flame

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the safety and thermal comfort of protective clothing used by firefighters was analyzed. Three-dimensional geometry and morphology models of real multilayer assemblies used in thermal protective clothing were mapped by selected Computer-Aided Design (CAD) software. In the designed assembly models, different scales of the resolution were used for the particular layers – a homogenization for nonwoven fabrics model and designing the geometry of the individual yarns in the model of woven fabrics. Then, the finite volume method to simulate heat transfer through the assemblies caused by their exposure to the flame was applied. Finally, the simulation results with experimental measurements conducted according to the EN ISO 9151 were compared. Based on both the experimental and simulation results, parameters describing the tested clothing protective features directly affecting the firefighter’s safety were determined. As a result of the experiment and simulations, comparable values of these parameters were determined, which could show that used methods are an efficient tool in studying the thermal properties of multilayer protective clothing.
Wydawca

Rocznik
Strony
298--304
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
  • Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland, adam.puszkarz@p.lodz.pl
  • Institute of Material Science of Textiles and Polymer Composites, Lodz University of Technology, 116 Zeromskiego Street, 90-924 Lodz, Poland
Bibliografia
  • [1] Luo, M. C., Beck, V. (1996). A study of non-flashover and flashover fires in a full-scale multiroom building. Fire Safety Journal, 26(3), 191–219.
  • [2] EN ISO 9151:2016 (2016). Protective clothing against heat and flame. Determination of heat transmission on exposure to flame.
  • [3] EN ISO 6942:2002. (2002). Protective clothing. Protection against heat and fire. Method of test: Evaluation of materials and material assemblies when exposed to a source of radiant heat.
  • [4] Keltner, N. (2005). Evaluation thermal protective performance testing. Journal of ASTM International, 2, 1–14.
  • [5] Zhang, H., Song, G., Su, H., Ren, H., Cao, J. (2017). An exploration of enhancing thermal protective clothing performance by incorporating aerogel and phase change materials. Fire and Materials, 41, 953–963.
  • [6] Torvi, D. A., Eng, P., Threlfall, T. G. (2006). Heat transfer model of flame resistant fabrics during cooling after exposure to fire. Fire Technology, 42, 27–48.
  • [7] Prahsarn, C., Roungpaisan, N., Klinsukhon, W., Suwannamek, N., Padee, S. (2018). Thermal and flame retardant properties of shaped polypropylene fibers containing modified-thai bentonite. AUTEX Research Journal, 18(1), 13–19.
  • [8] Matusiak, M., Kowalczyk, S. (2014). Thermal-insulation properties of multilayer textile packages. AUTEX Research Journal, 14(4), 299–307.
  • [9] Gadeikytė, A., Barauskas, R. (2020). Investigation of influence of forced ventilation through 3D textile on heat exchange properties of the textile layer. Journal of Measurements in Engineering 8(2), 72–78.
  • [10] Torvi, D. A., Hadjisophocleus, G. V. (1999). Research in protective clothing for firefighters: State of the art and future directions. Fire Technology 35(2), 111–130.
  • [11] Song, G., Mandal, S., Rossi, R. M. (2017). Thermal protective clothing for firefighters. Woodhead Publishing Series in Textiles: Number 189, Amsterdam.
  • [12] Zhu, F., Li, K. (2011). Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire. Fire Technology, 47, 801–819.
  • [13] Puszkarz, A. K., Krucinska, I. (2018). Simulations of air permeability of multilayer textiles by the computational fluid dynamics. International Journal for Multiscale Computational Engineering, 16(6), 509–526.
  • [14] Onofrei, E., Petrusic, S., Bedek, G., Dupont, D., Soulat, D. (2013). Study of heat transfer through multilayer textile structure used in firefighter protective clothing. 13th AUTEX World Textile Conference, Dresden, Germany.
  • [15] Fangrat, J., Wolański, P. (1991). One-dimensional analytical model of flame spread over solids. Journal of Fire Sciences, 9(5), 424–437.
  • [16] Zhu, F. L., Zhou, Y. (2013). Modelling heat moisture transport through firefighters’ protective fabrics from an impinging flame jet by simulating the drying process. Fibres and Textiles in Eastern Europe 21, 5(101), 85–90.
  • [17] Tian, M., Wang, Z., Li, J. (2016). 3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD. International Journal of Heat and Mass Transfer, 93, 314–321.
  • [18] Angelova, R. A., Kyosov, M., Stankov, P. (2019). Numerical investigation of the heat transfer through woven textiles by the jet system theory. Journal of the Textile Institute, 110(3), 386–395.
  • [19] Puszkarz, A. K., Krucinska, I. (2016). The study of knitted fabric thermal insulation using thermography and finite volume method. Textile Research Journal, 87(6), 643–656.
  • [20] Puszkarz, A. K., Krucinska, I. (2016). Study of multilayer clothing thermal insulation using thermography and the finite volume method. Fibres and Textiles in Eastern Europe 24 6(120), 129–137.
  • [21] Puszkarz, A. K., Usupov, A. (2019). The study of footwear thermal insulation using thermography and finite volume method. International Journal of Thermophysics, 40, 45.
  • [22] Puszkarz, A. K., Machnowski, W., Błasińska, A. (2020). Modeling of thermal performance of multilayer protective clothing exposed to radiant heat. Heat and Mass Transfer. doi: 10.1007/s00231-020-02820-1.
  • [23] Polymerdatabase (2020). Web site: http://polymerdatabase.com (accessed 18 May 2019).
  • [24] The Engineering ToolBox. (2001). Web site: https://www.engineeringtoolbox.com (accessed 18 May 2019).
  • [25] SolidWorks Flow Simulation - Technical Reference 2014.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6dab30bb-8538-44c6-938e-57a274e67601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.