Czasopismo
2013
|
Vol. 127, nr 1-4
|
209--223
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
This paper proposes a new framework for incremental rule induction of medical diagnostic rules based on incremental sampling scheme and rule layers. When an example is appended, four possibilities can be considered. Thus, updates of accuracy and coverage are classified into four cases, which give two important inequalities of accuracy and coverage for induction of probabilistic rules. By using these two inequalities, the proposed method classifies a set of formulae into four layers: the rule layer, subrule layer (in and out) and the non-rule layer. Then, the obtained rule and subrule layers play a central role in updating proabilistic rules. If a new example contributes to an increase in the accuracy and coverage of a formula in the subrule layer, the formula is moved into the rule layer. If this contributes to a decrease of a formula in the rule layer, the formula is moved into the subrule layer. The proposed method was evaluated on a dataset regarding headaches, whose results show that the proposed method outperforms the conventional methods.
Czasopismo
Rocznik
Tom
Strony
209--223
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Medical Informatics, Faculty of Medicine, Shimane University, 89-1 Enya-cho Izumo 693-8501 JAPAN, tsumoto@med.shimane-u.ac.jp
autor
- Department of Medical Informatics, Faculty of Medicine, Shimane University, 89-1 Enya-cho Izumo 693-8501 JAPAN, hirano@med.shimane-u.ac.jp
Bibliografia
- [1] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and Regression Trees, Wadsworth, 1984, ISBN 0-534-98053-8.
- [2] Clark, P., Niblett, T.: The CN2 Induction Algorithm, Machine Learning, 3, 1989.
- [3] Greco, S., Pawlak, Z., Slowinski, R.: Can Bayesian confirmation measures be useful for rough set decision rules ?, Engineering Applications of Artificial Intelligence, 17, 2004, 345-361.
- [4] Greco, S., Slowinski, R., Szczech, I.: Analysis of Symmetry Properties for Bayesian Confirmation Measures, in: Lietal. [6], 207-214.
- [5] Headache Classification Subcommittee of the International Headache Society: The International Classification of Headache Disorders: 2nd edition, Cephalalgia, 24 Suppl 1, 2004, 9-160.
- [6] Li, T., Nguyen, H. S., Wang, G., Grzymala-Busse, J. W., Janicki, R., Hassanien, A. E., Yu, H., Eds.: Rough Sets and Knowledge Technology - 7th International Conference, RSKT 2012, Chengdu, China, August 17-20, 2012. Proceedings, vol. 7414 of Lecture Notes in Computer Science, Springer, 2012, ISBN 978-3-64231899-3.
- [7] Matsumura, Y., Matsunaga, T., Maeda, Y., Tsumoto, S., Matsumura, H., Kimura, M.: Consultation System for Diagnosis of Headache and Facial Pain: ”RHINOS”, LP (E. Wada, Ed.), 221, Springer, 1985, ISBN 3-540-16479-0.
- [8] Michalski, R., Mozetic, I., Hong, J., , Lavrac, N.: The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains, Proceedings of the fifth National Conference on Artificial Intelligence, AAAI Press, Menlo Park, 1986.
- [9] Pawlak, Z.: Rough Sets, Kluwer Academic Publishers, Dordrecht, 1991.
- [10] Pawlak, Z.: Rough Modus Ponens, Proc. International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems 98, Paris, 1998.
- [11] Quinlan, J.: C4.5-Programs for Machine Learning, Morgan Kaufmann, Palo Alto, 1993.
- [12] Tsumoto, S.: Automated Induction of Medical Expert System Rules from Clinical Databases based on Rough Set Theory, Information Sciences, 112, 1998, 67-84.
- [13] Tsumoto, S.: Modelling Medical Diagnostic Rules Based on Rough Sets, Rough Sets and Current Trends in Computing (L. Polkowski, A. Skowron, Eds.), 1424, Springer, 1998, ISBN 3-540-64655-8.
- [14] Tsumoto, S.: Extraction of Hierarchical Decision Rules from Clinical Databases using Rough Sets, Information Sciences, 2003.
- [15] Tsumoto, S.: Incremental Rule Induction Based on Rough Set Theory, ISMIS (M. Kryszkiewicz, H. Rybinski, A. Skowron, Z. W. Ras, Eds.), 6804, Springer, 2011, ISBN 978-3-642-21915-3.
- [16] Tsumoto, S., Hirano, S.: Incremental Rules Induction Based on Rule Layers, in: Lietal. [6], 139-148.
- [17] Tsumoto, S., Tanaka, H.: PRIMEROSE: Probabilistic Rule Induction Method based on Rough Sets and Resampling Methods, Computational Intelligence, 11, 1995, 389-405.
- [18] Utgoff, P. E.: Incremental Induction of Decision Trees, Machine Learning, 4, 1989, 161-186.
- [19] Ziarko, W.: Variable Precision Rough Set Model, Journal of Computer and System Sciences, 46, 1993, 39-59.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6da94881-2ba0-4cac-907f-98633e11bd56