Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | Vol. 27, Fasc. 2 | 261--274
Tytuł artykułu

Metric entropy and the small deviation problem for stable processes

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The famous connection between metric entropy and small deviation probabilities of Gaussian processes was discovered by Kuelbs and Li in [6] and completed by Li and Linde in [9]. The question whether similar connections exist for other types of processes has remained open ever since. In [10], Li and Linde propose a first approach to this problem for stable processes. The present article clarifies the question completely for symmetric stable processes.
Wydawca

Rocznik
Strony
261--274
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Technische Universität Berlin, Institut für Mathematik, Sekr. MA 7-5, Straße des 17. Juni 136, 10623 Berlin, Germany, aurzada@math.tu-berlin.de
Bibliografia
  • [1] S. Artstein, Y. Milman and S. J. Szarek, Duality of metric entropy, Ann. of Math. (2) 159 (2004), pp. 1313-1328.
  • [2] F. Aurzada, On the lower tail probabilities of some random sequences in lp, preprint (2005), to appear in: J. Theoret. Probab., available at: http://www.springerlink.com/content/ 2487424381403th0/?p = 018780b6b8e34648916c47dc98cc8601&pi = 0
  • [3] F. Aurzada, Small deviations for stable processes via compactness properties of the parameter set, preprint (2006), to appear in: Statist. Probab. Lett., available at: http://www.math.tu-ber- lin.de/ ~ aurzada/sdviadudleymetric.pdf
  • [4] B. Carl and I. Stephani, Entropy, Compactness and the Approximation of Operators, Cam- bridge University Press, Cambridge 1990.
  • [5] D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge University Press, Cambridge 1996.
  • [6] J. Kuelbs and W. V. Li, Metric entropy and the small ball problem for Gaussian measures, J. Funct. Anal. 116 (1993), pp. 133-157.
  • [7] T. Kühn, Entropy numbers of general diagonal operators, Rev. Mat. Complut. 18 (2005), pp. 479-491.
  • [8] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin 1991.
  • [9] W. Y. Li and W. Linde, Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27 (1999), pp. 1556-1578.
  • [10] W. V. Li and W. Linde, Small deviations of stable processes via metric entropy, J. Theoret. Probab. 17 (2004), pp. 261-284.
  • [11] M. A. Lifshits and T. Simon, Small deviations for fractional stable processes, Ann. Inst. H. Poincare Probab. Statist. 41 (2005), pp. 725-752.
  • [12] M. Ryznar, Asymptotic behaviour of stable seminorms near the origin, Ann. Probab. 14 (1986), pp. 287-298.
  • [13] G. Samorodnitsky, Lower tails of self-similar stable processes, Bernoulli 4 (1998), pp. 127-142.
  • [14] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, New York 1994.
  • [15] T. Simon, Small ball estimates in p-variation for stable processes, J. Theoret. Probab. 17 (2004), pp. 979-1002.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6d71db74-2d17-4de7-b689-aff5871e827f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.