Warianty tytułu
Języki publikacji
Abstrakty
This work is a Copper oxide (CuO) thin films were effectively produced using cold spray technique. The process take place in an inert gas (helium) without using catalyst. Nano CuO was deposited on a glass slide, using helium as carrier gas heated to 100, 200, 300, and 400oC, respectively on heated glass substrates at 300°C. The effect of structural and electrical properties was examined at each temperature for each film. AFM images show that the CuO thin film have different diameters ranging from 80 to 600 nm, and low surface roughness about 20.9 nm. The measured value of copper oxide resistivity was found to be decrease very much with the increasing temperature. All the result showed that copper oxide is suitable material for photovoltaic applications. This research is part of a larger work for the solar cells industry. Therefore, the aim of this research is to study the electrical properties of solar cells in the primary stages of manufacturing from available materials at low costs.
Czasopismo
Rocznik
Tom
Strony
225-230
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Kerbala Technical Institute, Al-Furat Al-Awsat Technical University, 56001 Kerbala, Iraq, roaa.muneer@atu.edu.iq
autor
- Department of Production Engineering and Safety, Czestochowa University of Technology, al. Armii Krajowej 19B, 42-200 Czestochowa, Poland, adam.idzikowski@wz.pcz.pl
autor
- Collage of materials engineering, Department of Polymers and Petrochemical industries, University of Babylon, Hillah, Iraq, mat.ali.alzubiedy@uobabylon.edu.iq
Bibliografia
- 1. Khan, S.,et al., 2020. Control of particle size in flame spray pyrolysis of Tb-doped Y2O3 for bio-imaging. Materials (Basel), 13(13), 1-14, DOI:10.3390/ma13132987.
- 2. Jawad, M.F., Ismail, R.A., Yahea, K.Z., 2011. Preparation of nanocrystalline Cu 2O thin film by pulsed laser deposition. J. Mater. Sci. Mater. Electron., 22(9), 1244-1247, DOI:10.1007/s10854- 011-0294-0.
- 3. Gao, F., Liu, X.J., Zhang, J.S., Song, M.Z., Li, N., 2012. Photovoltaic properties of the p-CuO/n-Si heterojunction prepared through reactive magnetron sputtering. J. Appl. Phys, 111(8), 2-6, DOI: 10.1063/1.4704382.
- 4. Dhaouadi, M., 2018. Physical Properties of Copper Oxide Thin Films Prepared by Sol-Gel Spin-Coating Method. Am. J. Phys. Appl, 6(2), 43, DOI: 10.11648/j.ajpa.20180602.13.
- 5. Wang, Y., et al., 2016. Electronic structures of C u2 O, Cu4O3, and CuO: A joint experimental and theoretical study. Phys. Rev. B, 94(24), DOI: 10.1103/PhysRevB.94.245418.
- 6. Korzhavyi, P.A., Johansson, B., 2011. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation. Swedish Nucl. Fuel Waste Manag. Co, no. October, 8-22.
- 7. Zheng, W., Chen, Y., Peng, X., Zhong, K., Lin, Y., Huang, Z., 2018. The phase evolution and physical properties of binary copper oxide thin films prepared by reactive magnetron sputtering. Materials (Basel), 10(7), 1-13, DOI: 10.3390/ma11071253.
- 8. Choudhary, S., et al., 2013. Nanostructured CuO/SrTiO3 bilayered thin films for photoelectrochemical water splitting. J. Solid State Electrochem., 17(9), 2531-2538, DOI: 10.1007/s10008-013-2139-7.
- 9. Omar, N.I., Selvami, S., Kaisho M., Yamada M., Yasui T., Fukumoto M., 2020. Deposition of titanium dioxide coating by the cold-spray process on annealed stainless steel substrate. Coatings, 10(10), 1-13, DOI: 10.3390/coatings10100991.
- 10. Srikanth, A., Mohammed Thalib Basha, G., Venkateshwarlu, B., 2019. A Brief Review on Cold Spray Coating Process. Mater. Today Proc., 22, 1390-1397, DOI: 10.1016/j.matpr.2020.01.482.
- 11. Chakrabarty, R., Song, J., 2020. Numerical simulations of ceramic deposition and retention in metal-ceramic composite cold spray. Surf. Coatings Technol, 385, 125324, DOI: 10.1016/j.surfcoat.2019.125324.
- 12. Mason, T.G., 1999. New fundamental concepts in emulsion rheology [Review]. Curr. Opin. Colloid Interface Sci., 4(3), 231-238, DOI: 10.1016/S1359-0294(99)00035-7.
- 13. Singh, S., Raman, R.K.S., Berndt, C.C., Singh H., 2021. Influence of cold spray parameters on bonding mechanisms: A review. Metals (Basel)., 11(12), DOI: 10.3390/met11122016.
- 14. Yu, M., Li, W., Guo, X., Liao, H., 2013. Impacting behavior of large oxidized copper particles in cold spraying. J. Therm. Spray Technol., 22(2-3), 433-440, DOI: 10.1007/s11666-012-9849-8.
- 15. Kim, D.Y., et al., 2013. Cold spray deposition of copper electrodes on silicon and glass substrates. J. Therm. Spray Technol., 22(7), 1092-1102, DOI: 10.1007/s11666-013-9953-4.
- 16. Iqbal, Singh, Gursharan, Kaur, Bedi, R.K., 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Applied Surface Science, 257, 9546-9554.
- 17. Buppachat, Toboonsunga, Pisith, Singjai, 2011. Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process. Journal of Alloys and Compounds, 509, 4132-4137.
- 18. Zoolfakar, A.S., Rani, R.A., Morfa, A.J., O’Mullane, A.P., Kalantar-Zadeh, K., 2014. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C, 2(27), 5247-5270, DOI: 10.1039/c4tc00345d.
- 19. Michael, J.J., Iniyan S., 2015. Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers. Manag., 95, 160-169, DOI: 10.1016/j.enconman. 2015.02.017.
- 20. Yu, M., Li, W., Guo, X., Liao, H., 2013. Impacting behavior of large oxidized copper particles in cold spraying. J. Therm. Spray Technol., 22(2-3), 433-440, DOI: 10.1007/s11666-012-9849-8.
- 21. Singh, I., Kaur, G., Bedi, R.K., 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Appl. Surf. Sci., 257(22), 9546–9554, DOI: 10.1016/j.apsusc.2011.06.061.
- 22. Johan, M.R., Suan, M.S.M., Hawari, N.L., Ching, H.A., 2011. Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Int. J. Electrochem. Sci., 6(12), 6094-6104.
- 23. Fuentes-Perez. M.E., Dillingham M.S., Moreno-Herrero F., 2013. AFM volumetric methods for the characterization of proteins and nucleic acids, Methods, 60(2), 113-121, DOI: 10.1016/j.ymeth.2013.02.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6d676b3d-2943-409e-8507-ff4047633b95