Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Advanced radiation therapy techniques use small fields in treatment planning and delivery. Small fields have the advantage of more accurate dose delivery, but with the cost of some complications in dosimetry. Different dose calculation algorithms imported in various treatment planning systems (TPSs) which each of them has different accuracy. Monte Carlo (MC) simulation has been reported as one of the accurate methods for calculating dose distribution in radiation therapy. The aim of this study was the evaluation of TPS dose calculation algorithms in small fields against 2 MC codes. Methods: A linac head was simulated in 2 MC codes, MCNPX, and GATE. Then three small fields (0.5×0.5, 1×1 and 1.5×1.5 cm2) were simulated with 2 MC codes, and also these fields were planned with different dose calculation algorithms in Isogray and Monaco TPS. PDDs and lateral dose profiles were extracted and compared between MC simulations and dose calculation algorithms. Results: For 0.5×0.5 cm2 field mean differences in PDDs with MCNPX were 2.28, 4.6, 5.3, and 7.4% and with GATE were -0.29, 2.3, 3 and 5% for CCC, superposition, FFT and Clarkson algorithms respectively. For 1×1 cm2 field mean differences in PDDs with MCNPX were 1.58, 0.6, 1.1 and 1.4% and with GATE were 0.77, 0.1, 0.6 and 0.9% for CCC, superposition, FFT and Clarkson algorithms respectively. For 1.5×1.5 cm2 field mean differences in PDDs with MCNPX were 0.82, 0.4, 0.6 and -0.4% and with GATE were 2.38, 2.5, 2.7 and 1.7% for CCC, superposition, FFT and Clarkson algorithms respectively. Conclusions: Different dose calculation algorithms were evaluated and compared with MC simulation in small fields. Mean differences with MC simulation decreased with the increase of field sizes for all algorithms.
Rocznik
Tom
Strony
181--190
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
autor
- Department of Radiation Oncology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
autor
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran, mostaar@sbmu.ac.ir
Bibliografia
- 1. Behinaein S, Osei E, Darko J, et al. Evaluating small field dosimetry with the Acuros XB (AXB) and analytical anisotropic algorithm (AAA) dose calculation algorithms in the eclipse treatment planning system. J Radiother Pract. 2019:1-12. https://doi.org/10.1017/S1460396919000104
- 2. Mesbahi A, Zergoug I. Dose calculations for lung inhomogeneity in high-energy photon beams and small beamlets: a comparison between XiO and TiGRT treatment planning systems and MCNPX Monte Carlo code. Iran J Med Phys. 2015;12(3):167-77. https://doi.org/10.22038/IJMP.2015.6218
- 3. Alfonso R, Andreo P, Capote R, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35(11):5179-86. https://doi.org/10.1118/1.3005481
- 4. Park JC, Li JG, Arhjoul L, et al. Adaptive beamlet‐based finite‐size pencil beam dose calculation for independent verification of IMRT and VMAT. Med Phys. 2015;42(4):1836-1850. doi:10.1118/1.4914858
- 5. Khan FM, Gibbons JP. Khan's the physics of radiation therapy: Lippincott Williams & Wilkins; 2014.
- 6. Ojala JJ, Kapanen MK, Hyödynmaa SJ, et al. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo‐based dose distributions. J Appl Clin Med Phys. 2014;15(2):4-18. https://doi.org/10.1120/jacmp.v15i2.4662
- 7. Lechner W, Wesolowska P, Azangwe G, et al. A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. PhiRO. 2018;5:58-63. https://doi.org/10.1016/j.phro.2018.02.005
- 8. Azangwe G, Grochowska P, Georg D, et al. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys. 2014;41(7):072103. https://doi.org/10.1118/1.4883795
- 9. Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206-15. https://doi.org/10.1118/1.2815356
- 10. Westermark M, Arndt J, Nilsson B, et al. Comparative dosimetry in narrow high-energy photon beams. Phys Med Biol. 2000;45(3):685. https://doi.org/10.1088/0031-9155/45/3/308
- 11. Scott AJ, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35(10):4671-84. https://doi.org/10.1118/1.2975223
- 12. Gholami S, Longo F, Nedaie HA, et al. Application of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields. Med Dosim. 2018;43(3):214-223. https://doi.org/10.1016/j.meddos.2017.08.007
- 13. Partanen M, Ojala J, Niemelä J, et al. Comparison of two Monte Carlo-based codes for small-field dose calculations in external beam radiotherapy. Acta Oncol. 2017;56(6):891-3. https://doi.org/10.1080/0284186X.2017.1292048
- 14. Cranmer-Sargison G. Small field dosimetry: experimental methods and monte carlo simulation in small field radiation therapy dosimetry [Ph.D. thesis]. University of Leeds (United Kingdom); 2014.
- 15. Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Med Phys. 2007;34(5):1665-77. https://doi.org/10.1118/1.2727314
- 16. Mostaar A, Allahverdi M, Shahriari M. Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom. Int J Radiat Res. 2003;1(3):143-149.
- 17. Mesbahi A, Fix M, Allahverdi M, et al. Monte Carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements. Appl Radiat Isotopes. 2005;62(3):469-77. https://doi.org/10.1016/j.apradiso.2004.07.008
- 18. Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8(1):33-46. https://doi.org/10.1120/jacmp.v8i1.2324
- 19. Elcim Y, Dirican B, Yavas O. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys. 2018;19(5):616-24. https://doi.org/10.1002/acm2.12426
- 20. Hoskin P. External Beam Therapy: Oxford University Press; 2019.
- 21. Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107. https://doi.org/10.1088/0031-9155/48/21/R01
- 22. Mesbahi A, Reilly AJ, Thwaites DI. Development and commissioning of a Monte Carlo photon beam model for Varian Clinac 2100EX linear accelerator. Appl Radiat Isotopes. 2006;64(6):656-62. https://doi.org/10.1016/j.apradiso.2005.12.012
- 23. Jan S, Benoit D, Becheva E, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881. https://doi.org/10.1088/0031-9155/56/4/001
- 24. Sarrut D, Bardiès M, Boussion N, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41(6Part1). https://doi.org/10.1118/1.4871617
- 25. Palta JR, Liu C, Li JG. Quality assurance of intensity-modulated radiation therapy. Int J Radiat Oncol. Biol. Phys.. 2008;71(1):S108-S12. https://doi.org/10.1016/j.ijrobp.2007.05.092
- 26. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101. https://doi.org/10.1118/1.3438081
- 27. Fogliata A, Lobefalo F, Reggiori G, et al. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys. 2016;43(10):5685-94. https://doi.org/10.1118/1.4963219
- 28. Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case. Phys Medica. 2017;44:157-62. https://doi.org/10.1016/j.ejmp.2016.11.104
- 29. Cranmer-Sargison G, Beckham W, Popescu I. Modelling an extreme water–lung interface using a single pencil beam algorithm and the Monte Carlo method. Phys Med Biol. 2004;49(8):1557. https://doi.org/10.1088/0031-9155/49/8/013
- 30. Krieger T, Sauer OA. Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005;50(5):859. https://doi.org/10.1088/0031-9155/50/5/010
- 31. Fogliata A, Nicolini G, Clivio A, et al. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc® stereotactic treatments. Med Phys. 2011;38(11):6228-37. https://doi.org/10.1118/1.3654739
- 32. Huang B, Wu L, Lin P, et al. Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53. https://doi.org/10.1186/s13014-015-0357-0
- 33. Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6(1):82. https://doi.org/10.1186/1748-717X-6-82
- 34. Pelowitz DB. MCNPX user’s manual version 2.5. 0. Los Alamos National Laboratory. 2005;76:473.
- 35. Mesbahi A. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study. Appl Radiat Isotopes. 2007;65(9):1029-36. https://doi.org/10.1016/j.apradiso.2007.04.023
- 36. Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60(2):191-201. https://doi.org/10.1016/S0167-8140(01)00377-2
- 37. Calvo OI, Gutiérrez AN, Stathakis S, et al. On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT. J Appl Clin Med Phys. 2012;13(3):43-59. https://doi.org/10.1120/jacmp.v13i3.3751
- 38. Carrasco P, Jornet N, Duch MA, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium: dose calculation algorithms in lung heterogeneities. Med Phys. 2004;31(10):2899-911. https://doi.org/10.1118/1.1788932
- 39. Fotina I, Kragl G, Kroupa B, et al. Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol. 2011;187(7):433-41. https://doi.org/10.1007/s00066-011-2215-9
- 40. Chopra KL, Leo P, Kabat C, et al. Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities. Ther Radiol Oncol. 2018;2:420-7. https://doi.org/10.21037/tro.2018.07.01
- 41. Stathakis S, Esquivel C, Quino LV, et al. Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. Int J Med Phys Clin Eng Radiat Oncol. 2012; 1: 78–87. https://doi.or/10.4236/ijmpcero.2012.13011
- 42. Najafzadeh M, Nickfarjam A, Jabbari K, et al. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. J X-Ray Sci Technol. 2019;27(1):161-75. https://doi.org/10.3233/XST-180425
- 43. Caccia B, Andenna C, Iaccarino G, et al. Monte Carlo as a tool to evaluate the effect of different lung densities on radiotherapy dose distribution. Radiat Prot Dosim. 2014;162(1-2):115-9. https://doi.org/10.1093/rpd/ncu241
- 44. Palmans H, Andreo P, Huq MS, et al. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS‐483, the IAEA-AAPM international Code of Practice for reference and relative dose determination. Med Phys. 2018;45(11):e1123-e45. https://doi.org/10.1002/mp.13208
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6d66f0bc-e7a3-46aa-a948-39b86ef8fa30