Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | Vol. 42, nr 4 | 713--724
Tytuł artykułu

Dielectric functions and optical parameters of heavily doped and/or highly excited Si:P

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently shown photonic and optoelectronic potentialities of Si-based materials and devices require an accurate representation for their optical functions. A predictive model of dielectric function for heavily doped and/or highly excited Si:P is presented. The influence of dopants and of free-carrier population has been calculated independently, allowing the determination of accuracy in usual approximations. The effect of Drude parameters on the heavily doped Si:P optical response is taken into account. All results are supported by experimental data.
Wydawca

Czasopismo
Rocznik
Strony
713--724
Opis fizyczny
Bibliogr. 74 poz., rys., wykr.
Twórcy
autor
  • Photonic Systems Laboratory, Pôle API Parc d’Innovation, Boulevard Sébastien Brant, BP 10413, 67400 Illkirch, France, marek.basta@pwr.wroc.pl
  • Institute of Physics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Photonic Systems Laboratory, Pôle API Parc d’Innovation, Boulevard Sébastien Brant, BP 10413, 67400 Illkirch, France
Bibliografia
  • [1] JELLISON G.E., JR., WITHROW S.P., MCCAMY J.W., BUDAI J.D., LUBBEN D., GODBOLE M.J., Optical functions of ion-implanted, laser-annealed heavily doped silicon, Physical Review B 52(20), 1995, pp.14607–14614
  • [2] ASPNES D.E., STUDNA A.A., Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV, Physical Review B 27(2), 1983, pp. 985–1009.
  • [3] FRIED M., LOHNER T., AARNINK W.A.M., HANEKAMP L.J., VAN SILFHOUT A., Determination of complex dielectric functions of ion implanted and implanted-annealed amorphous silicon by spectroscopic ellipsometry, Journal of Applied Physics 71(10), 1992, pp. 5260–5262.
  • [4] PING SHENG, Theory for the dielectric function of granular composite media, Physical Review Letters 45(1), 1980, pp. 60–63.
  • [5] OLEVANO V., PALUMMO M., ONIDA G., DEL SOLE R., Exchange and correlation effects beyond the LDA on the dielectric function of silicon, Physical Review B 60(20), 1999, pp. 14224–14233.
  • [6] GREEN M.A., Third generation photovoltaics: solar cells for 2020 and beyond, Physica E 14(1–2), 2002, pp. 65–70.
  • [7] ASPNES D.E., QUINN W.E., TAMARGO M.C., PUDENSI M.A.A., SCHWARZ S.A., BRASIL M.J.S.P., NAHORY R.E., GREGORY S., Growth of Alx Ga1–xAs parabolic quantum wells by real-time feedback control of composition, Applied Physics Letters 60(10), 1992, pp. 1244–1246.
  • [8] PETERS M., RÜDIGER M., HERMLE M., BLAESI B., Photonic crystals in solar cells: a simulation approach, Proceedings of SPIE 7725, 2010, article 772514.
  • [9] HONSBERG C.B., YUN F., GREEN M.A., WENHAM S.R., Mechanically grooved, multi-junction, interdigitated rear contact silicon solar cell for low lifetime substrates, 12th European Photovoltaic Solar Energy Conference, April, 1994, pp. 63–66.
  • [10] TOIGO F., WOODRUFF T.O., Calculation of the dielectric function for a degenerate electron gas with interactions. I. Static limit, Physical Review B 2(10), 1970, pp. 3958–3966.
  • [11] LENG J., OPSAL J., CHU H., SENKO M., ASPNES D.E., Analytic representations of the dielectric functions of materials for device and structural modeling, Thin Solid Films 313–314, 1998, pp. 132–136.
  • [12] JELLISON G.E., JR., MODLINE F.A., Parametrization of the optical functions of amorphous materials in the interband region, Applied Physics Letters 69(3), 1996, pp. 371–373.
  • [13] BELL K.A., MANTESE L., ROSSOW U., ASPNES D.E., Systematic differences among nominal reference dielectric function spectra for crystalline Si as determined by spectroscopic ellipsometry, Thin Solid Films 313–314, 1998, pp. 161–166.
  • [14] GLUNZ S.W., High-efficiency crystalline silicon solar cells, Advances in Optoelectronics 2007, pp. 1–15.
  • [15] KUZNICKI Z.T., BIGOT J.-Y., Optically active Si surfaces, Proceedings of SPIE 7002, 2008, article 70020R.
  • [16] SMITH D.R., PADILLA W.J., VIER D.C., NEMAT-NASSER S.C., SCHULTZ S., Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters 84(18), 2000, pp. 4184–4187.
  • [17] HWANG E.H., DAS SARMA S., Dielectric function, screening and plasmons in two-dimensional graphene, Physical Review B 75(20), 2007, article 205418.
  • [18] BENDER M., TRUBE J., STOLLENWERK J., Deposition of transparent and conducting tindium-tin-oxide films by the r.f.-superimposed DC sputtering technology, Thin Solid Films 354(1–2), 1999, pp. 100–105.
  • [19] SCHUBERT M., RHEINLÄNDER B., WOOLLAM J.A., JOHS B., HERZINGER C.M., Extension of rotating--analyzer ellipsometry to generalized ellipsometry: determination of the dielectric function tensor from uniaxial TiO2 , Journal of the Optical Society of America A 13(4), 1996, pp. 875–883.
  • [20] CHEN T.P., LIU Y., TSE M.S., TAN O.K., HO P.F., LIU K.Y., GUI D., TAN A.L.K., Dielectric functions of Si nanocrystals embedded in a SiO2 matrix, Physical Review B 68(15), 2003, article 153301.
  • [21] KUZNICKI Z.T., Enhanced absorption and quantum efficiency in locally modified single-crystals Si, Applied Physics Letters 81(25), 2002, pp. 4853–4855.
  • [22] EHRENREICH H., PHILIPP H.R., PHILLIPS J.C., Interband transitions in groups 4, 3-5 and 2-6 semiconductors, Physical Review Letters 8(2), 1962, pp. 59–61.
  • [23] CARDONA M., GREENAWAY D.L., Reflectivity of gray tin single crystals in the fundamental absorption region, Physical Review 125(4), 1962, pp.1291–1296.
  • [24] JUNGK G., Many-particle effects at the E1-transition in silicon, Physica Status Solidi B 99(2), 1980, pp. 643–650.
  • [25] JELLISON G.E., JR., MODINE F.A., Optical functions of silicon between 1.7 and 4.7 eV at elevated temperatures, Physical Review B 27(12), 1983, pp. 7466–7472.
  • [26] SARI S.O., SCHNATTERLY S.E., Optical spectroscopy of semiconductors in high magnetic fields using polarization modulation, Surface Science 37, 1973, pp. 328–339.
  • [27] MATATAGUI E., THOMPSON A.G., CARDONA M., Thermoreflectance in semiconductors, Physical Review 176(3), 1968, pp. 950–960.
  • [28] GUIZZETTI G., NOSENZO L., REGUZZONI E., SAMOGGIA G., Thermoreflectance spectra of diamond and zinc-blende semiconductors in the vacuum-ultraviolet region, Physical Review B 9(2), 1974, pp. 640–647.
  • [29] DAUNOIS A., ASPNES D.E., Electroreflectance and ellipsometry of silicon from 3 to 6 eV, Physical Review B 18(4), 1978, pp. 1824–1839.
  • [30] GROVER J.W., HANDLER P., Electroreflectance of silicon, Physical Review B 9(6), 1974, pp. 2600–2606.
  • [31] ZUCCA R.R.L., SHEN Y.R., Wavelength-modulation spectra of some semiconductors, Physical Review B 1(6), 1970, pp. 2668–2676.
  • [32] WELKOWSKY M., BRAUNSTEIN R., Interband transitions and exciton effects in semiconductors, Physical Review B 5(2), 1972, pp. 497–509.
  • [33] KUZNICKI Z.T., LEY M., Enhanced absorbance of a strained nanoscale Si-layered system, Applied Physics Letters 82(24), 2003, pp. 4241–4243.
  • [34] SZE S.M., Physics of Semiconductor Devices, John Wiley and Sons, 1981.
  • [35] LAUTENSCHLAGER P., GARRIGA M., VINA L., CARDONA M., Temperature dependence of the dielectric function and interband critical points in silicon, Physical Review B 36(9), 1987, pp. 4821–4830.
  • [36] BASU S., LEE B.J., ZHANG Z.M., Infrared radiative properties of heavily doped silicon at room temperature, Journal of Heat Transfer 132(2), 2010, article 023301.
  • [37] BENEDICT L.X., WETHKAMP T., WILMERS K., COBET C., ESSER N., SHIRLEY E.L., RICHTER W., CARDONA M., Dielectric function of wurtzite GaN and AlN thin films, Solid State Communications 112(3), 1999, pp. 129–133.
  • [38] GOLDHAHN R., SCHLEY P., WINZER A.T., GOBSH G., CIMALLA V., AMBACHER O., RAKEL M., COBET C., ESSER N., LU H., SCHAFF W.J., Detailed analysis of the dielectric function for wurtzite InN and In-rich InAlN alloys, Physica Status Solidi A 203(1), 2006, pp. 42–49.
  • [39] LI HUANG, CALLAN J.P., GLEZER E.N., MAZUR E., GaAs under intense ultrafast excitation: response of the dielectric function, Physical Review Letters 80(1), 1998, pp. 185–188.
  • [40] KUZNICKI Z.T., MEYRUEIS P., Solar-light induced opacity of MIND cells, Proceedings of SPIE 6197, 2006, article 619716.
  • [41] VIÑA L., LOGOTHETIDIS S., CARDONA M., Temperature dependence of the dielectric function of germanium, Physical Review B 30(4), 1984, pp. 1979–1991.
  • [42] LOGOTHETIDIS S., CARDONA M., LAUTENSCHLAGER P., GARRIGA M., Temperature dependence of the dielecric function and the interband critical points of CdSe, Physical Review B 34(4), 1986, pp. 2458–2469.
  • [43] YIN Z., SMITH F.W., Optical dielectric functions and infrared absorption of hydrogenated amorphous silicon nitride films: experimental results and effective-medium-approximation analysis, Physical Review B 42(6), 1990, pp. 3666–3675.
  • [44] KUZNICKI Z.T., LEY M., LEZEC H.J., SARRABAYROUSE G., ROUSSET B., ROSSEL F., MIGEON H., WIRTZ T., Non-linear optical functions of crystalline-Si resulting from nanoscale layered systems, Materials Science and Engineering C 26(5–7), 2006, pp. 961–965.
  • [45] DE FILIPPO F., DE LISIO C., MADDALENA P., LÉRONDEL G., YAO T., ALTUCCI C., Determination of the dielectric function of porous silicon by high-order laser-harmonic radiation, Applied Physics A 73(6), 2001, pp. 737–740.
  • [46] THEISS W., The dielectric function of porous silicon – how to obtain it and how to use it, Thin Solid Films 276(1–2) ,1996, pp. 7–12.
  • [47] LIOUDAKIS E., NASSIOPOULOU A., OTHONOS A., Ellipsometric analysis of ion-implanted polycrystalline silicon films before and after annealing, Thin Solid Films 496(2), 2006, pp. 253–258.
  • [48] ASPNES D.E., THEETEN J.B., Dielectric function of Si–SiO2 and Si–Si3 N4 mixtures, Journal of Applied Physics 50(7), 1979, pp. 4928–4935.
  • [49] PENN D.R., Wave-number-dependent dielectric function of semiconductors, Physical Review 128(5), 1962, pp. 2093–2097.
  • [50] BERTSCH G.F., IWATA J.-I., RUBIO A., YABANA K., Real-space, real-time method for the dielectric function, Physical Review B 62(12), 2000, pp. 7998–8002.
  • [51] KIM C.C., GARLAND J.W., ABAD H., RACCAH P.M., Modeling the optical dielectric function of semiconductors: Extension of the critical-point parabolic-band approximation, Physical Review B 45(20), 1992, pp. 11749–11767.
  • [52] PENN D.R., Electron mean-free-path calculations using a model dielectric function, Physical Review B 35(2), 1987, pp. 482–486.
  • [53] SRINIVASAN G., Microscopic dielectric function of a model semiconductor, Physical Review 178(3), 1969, pp. 1244–1251.
  • [54] TAYLOR R., A simple, useful analytical form of the static electron gas dielectric function, Journal of Physics F: Metal Physics 8(8), 1978, pp. 1699–1702.
  • [55] ICHIMARU S., UTSUMI K., Analytic expression for the dielectric screening function of strongly coupled electron liquids at metallic and lower densities, Physical Review B 24(12), 1981, pp. 7385–7388.
  • [56] SPANIER J.E., HERMAN I.P., Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films, Physical Review B 61(15), 2000, pp. 10437–10450.
  • [57] KOOTSTRA F., DE BOEIJ P.L., SNIJDERS J.G., Application of time-dependent density-functional theory to the dielectric function of various non-metallic crystals, Physical Review B 62(11), 2000, pp. 7071–7083.
  • [58] LEVINE Z.H., LOUIE S.G., New model dielectric function and exchange-correlation potential for semiconductors and insulators, Physical Review B 25(10), 1982, pp. 6310–6316.
  • [59] YU P.Y., CARDONA M., Fundamentals of Semiconductors, Springer-Verlag, Berlin, 1996.
  • [60] HARRISON W.A., Electronic Structure and the Properties of Solids: The Physics of Chemical Bonds, W.H. Freeman and Company, San Francisco, 1980.
  • [61] RIDLEY B.K., Quantum Processes in Semiconductors, Clarendon Press, Oxford, 1998.
  • [62] COHEN M.L., CHELICOWSKY J.R., Electronic Structure and Optical Parameters of Semi-Conductors, Springer Series in Solid-State Sciences, Springer-Verlag, Berlin, 1981.
  • [63] LANOO M., BOURGOIN J., Points Defects in Semiconductors I, Theoretical Aspects, Springer-Verlag, Berlin, 1981.
  • [64] WECKEBACH W.T., Essentials of Semiconductor Physics, John Wiley and Sons, Chichester, 1999.
  • [65] WALTER J.P., COHEN M.L., Wave-vector-dependent dielectric function for Si, Ge, GaAs and ZnSe, Physical Review B 2(6), 1970, pp. 1821–1826.
  • [66] YU G., SOGA T., JIMBO T., UMENO M., Characterization of MOCVD-grown GaAs on Si by spectroscopic ellipsometry, Applied Surface Science 100–101, 1996, pp. 617–620.
  • [67] SOKOLOWSKI-TINTEN K., VON DER LINDE D., Generation of dense electron-hole plasmas in silicon, Physical Review B 61(4), 2000, pp. 2643–2650.
  • [68] CANFIELD L.R., KERNER J., KORDE R., Stability and quantum efficiency performance of silicon photodiode detectors in the far ultraviolet, Applied Optics 28(18), 1989, pp. 3940–3943.
  • [69] ERMAN M., ANDRE J.P., LEBRIS J., Spectroscopic ellipsometry study of InP, GaInAs, GaInAs/Pheterostructures, Journal of Applied Physics 59(6), 1986, pp. 2019–2025.
  • [70] HUBER R., TAUSER F., BRODSCHELM A., BICHLER M., ABSTREITER G., LEITENSTORFER A., How many-particle interactions develop after an ultrafast excitation of an electron–hole plasma, Nature 414(6861), 2001, pp. 286–289.
  • [71] ALTUKHOV P.D., KUZMINOV E.G., The self-compression of injected electron–hole plasma in silicon, Physica Status Solidi B 232(2), 2002, pp. 364–379.
  • [72] SIERADZKI A., BASTA M., BIGOT J.-Y., KUŹNICKI Z.T., Ultrafast excitation of dense electron gas in silicon nanostructures, (to be published).
  • [73] BÜCHER K., BRUNS J., WAGEMANN H.G., Absorption coefficient of silicon: an assessment of measurements and the simulation of temperature variation, Journal of Applied Physics 75(2), 1994, pp. 1127–1132.
  • [74] ASPNES D.E., STUDNA A.A., KINSBRON E., Dielectric properties of heavily doped crystalline and amorphous silicon from 1.5 to 6.0 eV, Physical Review B 29(2), 1984, pp. 768–779.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6d656b10-0377-4679-bbd7-a5d9bd8036c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.