Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | T. 22, nr 1-4 | 93--101
Tytuł artykułu

Wybrane zastosowanie skał, minerałów oraz nowoczesnych nanomateriałów w biotechnologii

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
Selected applications of rocks, minerals and modern nanomaterials in biotechnology
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano wybrane zastosowania materiałów pochodzenia naturalnego oraz antropogenicznego w kilku gałęziach biotechnologii. Wśród materiałów naturalnych uwzględniono zeolity pochodzące z węgla kamiennego, węgiel brunatny, kalcyt, kwarc, piryt, hydroksyapatyt i żel krzemionkowy. Wśród materiałów syntetycznych opisano zastosowanie w biotechnologii struktur metaloorganicznych MOF, węgla aktywnego i nanorurek węglowych. Przykłady zastosowań wzbogacono o wyniki analiz strukturalnych tych materiałów, które przeprowadzono w ramach prac badawczych Instytutu Mechaniki Górotworu PAN.
EN
The article presents selected applications of materials of natural and anthropogenic origin in several branches of biotechnology. Natural materials include zeolites derived from hard coal, lignite, calcite, quartz, pyrite, hydroxyapatite and silica gel. Synthetic materials include the use of metal–organic framework MOF, active carbon and carbon nanotubes in the biotechnology. Examples of applications were enriched with the results of structural analyzes of these materials, which were carried out as part of the research work of the Strata Mechanics Research Institute of the Polish Academy of Sciences.
Wydawca

Rocznik
Strony
93--101
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Wydział Biochemii, Biofizyki i Biotechnologii, Uniwersytet Jagielloński
autor
  • Instytut Mechaniki Górotworu Polskiej Akademii Nauk
Bibliografia
  • Abánades Lázaro I., Forgan R.S., 2019: Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews 380, 230-259.
  • Babajide O., Musyoka N., Petrik L., Ameer F., 2012: Novel zeolite Na-X synthesized from fly ash as a heterogeneous catalyst in biodiesel production. Catalysis Today 190 (1) , 54-60.
  • Bernardi D., DeJong J.T., Montoya B.M., Martinez B.C., 2014: Bio-bricks: Biologically cemented sandstone bricks. Construction and Building Materials 55, 462-469.
  • Chen Y., Meng X.Z., Gu H.W., Yi H.C., Sun W.Y., 2019: A dual-response biosensor for electrochemical and glucometer detection of DNA methyltransferase activity based on functionalized metal-organic framework amplification. Biosensors and Bioelectronics 134, 117-122.
  • Cheng L., Kobayashi T., Shahin M.A., 2020: Microbially induced calcite precipitation for production of “bio-bricks” treated at partial saturation condition. Construction and Building Materials 231, 117095.
  • Cipreste M.F., Da Nova Mussel W., Batista da Silva J., Betânia de Freitas Marques M., Campos Batista R.J., Lana Gastelois P., De Almeida Macedoa W.A., Martins Barros de Sousa E., 2020: A new theranostic system for bone disorders: Functionalized folate-MDP hydroxyapatite nanoparticles with radiolabeled copper-64. Materials Chemistry and Physics 254, 123265.
  • Clavijo-Mejía G.A., Hermann-Muñoz J.A., Rincón-López J.A., Ageorges H., Muñoz-Saldaña J., 2020: Bovine-derived hydroxyapatite coatings deposited by high-velocity oxygen-fuel and atmospheric plasma spray processes: A comparative study. Surface and Coatings Technology 381, 125193.
  • Erbay C., Pu X., Choi W., Choi M.J., Ryu Y., Hou H., Lin F., Figueiredo P., Yu C., Han A., 2015: Control of geometrical properties of carbon nanotube electrodestowards high-performance microbial fuel cells. Journal of Power Sources 280, 347-354.
  • Fatouros D.G., Douroumis D., Nikolakis V., Ntais S., Moschovi A.M., Trivedi V., Khima B., Roldo M., Nazar H., Cox. J. P.A., 2011: Materials Chemistry 21, 7789-7794.
  • Giménez-Marqués M., Hidalgo T., Serre C., Horcajada P., 2016: Nanostructured metal-organic frameworks and their bio-related applications. Coordination Chemistry Reviews 307 (2), 342-360.
  • Guren M.G., Putnis C.V., Montes-Hernandez G., King H.E., Renard F., 2020: Direct imaging of coupled dissolution-precipitation and growth processes on calcite exposed to chromium-rich fluids. Chemical Geology 552, 119770
  • http://mikrofotografianaukowa.blogspot.com/
  • Huxford R.C., Della Rocca J., Lin W., 2010: Metal-organic frameworks as potential drug carriers. Current Opinion in Chemical Biology 14 (2), 262-268
  • Jodłowski P.J., Kurowski G., Boguszewska-Czubara A., Kuterasiński Ł., Sitarz M., Jaśkowska J., Kołodziej A., Pajdak A., 2021: Cracking the chloroquine conundrum: the application of defective UiO-66 metal-organic framework materials to prevent the onset of heart defects – in vivo and in vitro. ACS Applied Materials & Interfaces. 13 (1), 312-323.
  • Łaskawiec K., Gębarowski P., Zapotoczna-Sytek G., Małolepszy J., 2011: Fly ashes of new generation as a raw material to the problem of autoclaved aerated concrete (AAC). „Securing a sustainable future”: 5th international conference on Autoclaved Aerated Concrete 119-128.
  • Le Guillou-Buffello D., Hélary G., Gindre M., Pavon-Djavid G., Laugier P., Migonney V., 2005: Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique. Biomaterials 26 (19), 4197-4205.
  • Leea W.H., Looa C.Y., Rohanizadeh R., 2019: Functionalizing the surface of hydroxyapatite drug carrier with carboxylicacid groups to modulate the loading and release of curcumin nanoparticles. Materials Science and Engineering: C 99, 929-939.
  • Li M., Zhu X., Zhu F., Ren G., Cao G., Song L., 2011: Application of modified zeolite for ammonium removal from drinking water. Desalination 271 (1-3), 295-300.
  • Lia W., Chena B., Zhanga H., Sunb Y., Wangb J., Zhanga J., Fu Y., 2014: BSA-stabilized Pt nanozyme for peroxidase mimetics and itsapplication on colorimetric detection of mercury(II) ions. Biosensors & Bioelectronics 66, 251-258.
  • Liew K.B., WanDaud W.R., Ghasemi M., Leong J.X., Lim S.S., Ismail M., 2014: Non-Pt catalyst as oxygen reduction reaction inmicrobial fuel cells: A review. International Journal of Hydrogen Energy 39 (10), 4870-4883.
  • Lim Y., Yu J., Park S., Kim M., Chen S., Aziemah N., Bakri B., Izzati N., Binti A., Sabri M., Bae S., Kim H.S., 2020: Development of biocatalysts immobilized on coal ash-derived Ni-zeolite for facilitating 4-chlorophenol degradation. Bioresource Technology 307, 123201.
  • Lin X., Lian X., Luo B., Huang X.C., 2020: A highly sensitive and stable electrochemical HBV DNA biosensor based on ErGO-supported Cu-MOF. Inorganic Chemistry Communications 119, 108095.
  • Liu W., Yan Z., Zhang Z., Zhang Y., Cai G., Li Z., 2019: Bioactive and anti-corrosive bio-MOF-1 coating on magnesium alloy for bone repair application. Journal of Alloys and Compounds 788, 705-711.
  • Liu W., Zhijie Y., Ma X., Geng T., Wu H., Li Z., 2018: Mg-MOF-74/MgF2 Composite Coating for Improving the Properties of Magnesium Alloy Implants: Hydrophilicity and Corrosion Resistance. Materials (Basel) 11 (3), 396.
  • Liu Y., Harnisch F., Fricke K., Schröder U., Climent V., Feliu J.M., 2010: The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Biosensors and Bioelectronics 25 (9), 2167-2171.
  • Mateo-Martí E., Briones C., Rogero C., Gomez-Navarro C., Methivier Ch., Pradier C.M., Martín-Gago J.A., 2008: Nucleic acid interactions with pyrite surfaces. Chemical Physics 352 (1-3), 11-18.
  • Mateo-Martí E., Rogero C., Briones C., Martín-Gago J.A., 2007: Do peptide nucleic acids form self-assembled monolayers on pyrite surfaces? Surface Science 601 (18), 4195-4199.
  • Moreno N., Querol X., Ayora C., 2001: Utilisation of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environmental Science Technology 35, 3526-3534.
  • Ou D., Sun D., Liang Z., Chen B., Lin X., Chen Z., 2019: A novel cytosensor for capture, detection and release of breast cancer cells based on metal organic framework PCN-224 and DNA tetrahedron linked dual-aptamer. Sensors and Actuators B: Chemical 285, 398-404.
  • Pajdak A., Skoczylas N., Dębski A., Grzegorek J., Maziarz W., Kudasik M. 2019: CO2 and CH4 sorption on carbon nanomaterials and coals – Comparative characteristics. Journal of Natural Gas Science and Engineering 72, 103003.
  • Pander M., Żelichowska A., Bury W., 2018: Probing mesoporous Zr-MOF as drug delivery system for carboxylate functionalized molecules. Polyhedron 156, 131-137.
  • Pandey A., Dhas N., Deshmukh P., Caro C., Patil P., García-Martín M.L., Padya B., Nikam A., Mehta T., Mutalik S., 2020: Heterogeneous surface architectured metal-organic frameworks for cancer therapy, imaging, and biosensing: A state-of-the-art review. Coordination Chemistry Reviews 409, 213212.
  • Patane G., Mavillia L., Corigliano F., 1996: Chromium removal from wastewater by zeolitized waste materials. Materials Engineering 7, 509-519.
  • Sadeghi-Soureh S., Jafari R., Gholikhani-Darbroud R., Pilehvar-Soltanahmadi Y., 2020: Potential of Chrysin‐loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. Journal of Drug Delivery Science and Technology 58, 101802.
  • Sarawade P., Tan H., Polshettiwar V., 2013: Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity. ACS Sustainable Chem. Eng. 1, 1, 66-74.
  • Scholz M., Martin R.J., 1997: Ecological equilibrium on biological activated carbon. Water Research 31 (12), 2959-2968.
  • Serati-Nouri H., Jafari A., Roshangar L., Dadashpour M., Pilehvar-Soltanahmadi Y., Zarghami N., 2020: Biomedical applications of zeolite-based materials: A review. Materials Science and Engineering: C 116, 111225.
  • Sharma T., Reddy L.M., Ramaprabhu C., 2008: Development of carbon nanotubes and nanofluids basedmicrobial fuel cell. International Journal of Hydrogen Energy 33 (22), 6749-6754.
  • Simpson D., 2008: Biofilm processes in biologically active carbon water purification. Water Research 42 (12), 2839-2848.
  • Srinivasan A., Grutzech M.W., 1999: The adsorption of SO2 by zeolites synthesized from fly ash. Environmental Science Technology 33, 1464-1469.
  • Suresh Kumar G., Girija E.K., Thamizhavel A., Yokogawa Y., Narayana Kalkura S., 2010: Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications. Journal of Colloid and Interface Science 349, 56-62.
  • Swaidana A., Borthakurc P., Boruahc P.K.,d, Dasc M.R., Barrasa A., Hamiehb S., Toufailyb J., Hamiehb T., Szuneritsa S., Boukherroub R., 2019: A facile preparation of CuS-BSA nanocomposite as enzyme mimics:Application for selective and sensitive sensing of Cr(VI) ions. Sensors and Actuators B: Chemical 294, 253-262.
  • Tang Y., Elzinga E. J., Lee Y.J., Reeder R.J., 2007: Coprecipitation of chromate with calcite: Batch experimentsand X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta 71 (6), 1480-1493.
  • Tao L., Huang J., Dastan D., Wang T., Li J., Yin X., Wang Q., 2020: CO2 capture and separation on charge-modulated calcite. Applied Surface Science 530, 147265.
  • Wanga H., Jiana Y., Konga Q., Liua H., Lana F., Lianga L., Gea S., Yu J., 2018: Ultrasensitive electrochemical paper-based biosensor for microRNAvia strand displacement reaction and metal-organic frameworks. Sensors and Actuators B 257, 561-569.
  • Zhang N., Zheng H., Hu X., Zhu Q., Stanislaus M.S., Li S., Zhao C., Wang Q., Yang Y., 2019: Enhanced bio-methane production from ammonium-rich waste using eggshell-and lignite-modified zeolite (ELMZ) as a bio-adsorbent during anaerobic digestion. Process Biochemistry 81, 148-155.
  • Zhang Y., Chen X., Yuan Y., Lu X., Yang Z., Wang Y., Sun J., 2018: Long-term effect of carbon nanotubes on electrochemical properties and microbial community of electrochemically active biofilms in microbial fuel cells. International Journal of Hydrogen Energy 43 (33), 16240-16247.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6d1f1041-dc15-4b34-aaed-2136de68f272
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.