Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 68, nr 1 | 81--93
Tytuł artykułu

Fåhræus effect revisited

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A consistent hydrodynamic analysis of blood flow through capillaries is proposed. The approach, while suggested by empirical observations, is based solely on the properties of Newtonian fluids and suspensions. Blood flow is divided into three phases: the first is a thin erythrocyte-free layer near the wall, the second a core flow of constant hematocrit and the third an intermediate layer wherein the hematocrit varies. Based on the observation that viscosity depends exponentially on the local hematocrit, blood flow velocity profiles are obtained and the direct connection between the Fåhræus and the Fåhræus-Lindqvist effects is established.
Wydawca

Rocznik
Strony
81--93
Opis fizyczny
Bibliogr. 12 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy of Sciences
Bibliografia
  • 1. R. Fåhræus, The suspension stability of blood, Physiol. Rev., 9, 241–279. 1929.
  • 2. J.H. Barbee, G.R. Cockelet, The Fåhræus effect, Microvascular Res., 3, 6–16, 1971.
  • 3. R. Fåhræus, T. Lindqvist, The viscosity of the blood in narrow capillary tubes, Amer. J. Physiol., 96, 562–568, 1931.
  • 4. A.R. Pries, D. Neuhaus, P. Gaehtgens, Blood viscosity in tube flow: dependence on diameter and hematocrit, Am. J. Physiol., 263, H1770–H1778, 1992.
  • 5. H.L. Goldsmith, G.R. Cockelet, P. Gaehtgens, Robin Fåhræus: evolution of his concepts in cardiovascular physiology, Am. J. Physiol., 257, H1005–H1015, 1989.
  • 6. M. Sharan, A.S. Popel, A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall, Biorheology, 38, 415–428, 2001.
  • 7. C.Y. Wang, J.B. Bassingthwaighte, Blood flow in small curved tubes, J. Biomech. Eng., 125, 910–913, 2003.
  • 8. C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed, The Mechanics of Circulation, Oxford Univ. Press, 1979.
  • 9. J.H. Barbee, The effect of temperature on the relative viscosity of human blood, Biorheology, 10, 1–5, 1973.
  • 10. R.G. Cox, S.G. Mason, Suspended particles in fluid flow through tubes, Ann. Rev. Fluid Mech., 3, 1971.
  • 11. T.W. Secomb, R. Skalak, N. Özkaya, J.F. Gross, Flow of axisymmetric red blood cells in narrow capillaries, J. Fluid Mech., 163, 405–423, 1986.
  • 12. T.W. Secomb, A.R. Pries, Flow in microchannels and microvessel network: flexible particles (cells, vesicles) and cell-vascular wall interactions, Proceedings of the 5th World Congress of Biomechanics, Munich, 331, 2006.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6d18415f-96b0-4559-8498-d9a5f4fb5398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.