Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | Vol. 70, no 1 | 191--209
Tytuł artykułu

Prediction of the electromagnetic responses of geological bodies based on a temporal convolutional network model

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The transient electromagnetic method employed in aeromagnetic surveys has been widely used for geophysical, petroleum, and engineering exploration because geophysical characteristics can be predicted as an inversion problem based on measured electromagnetic response data. However, this process requires uniformly and densely distributed electromagnetic response data, which are typically unavailable in actual TEM applications due to the high cost of the aeromagnetic surveys, which necessitates the use of large grid patterns to effectively map large areas. Therefore, developing methods for predicting missing electromagnetic response data based on the available data is essential for ensuring the accurate characterization of geological bodies. The present work addresses this issue by establishing an electromagnetic response curve prediction model based on a temporal convolutional network (TCN) architecture. Firstly, the electromagnetic response data is subjected to grey relational analysis to obtain correlations and reduce the data dimension. Secondly, the response data with correlation degrees greater than a threshold are selected as TCN model input. Finally, the TCN model establishes the nonlinear relationship between the electromagnetic response parameter sequence and its output sequence. The proposed model and other existing state-of-the-art prediction models are applied to actual electromagnetic prospecting data, and the results demonstrate that the proposed TCN model provides higher prediction accuracy and stronger robustness than the other models considered. Moreover, the proposed model is suitable for processing multiple series of related data, such as electromagnetic response prediction models. Therefore, the proposed model has good application prospects in electromagnetic response prediction and electromagnetic response recovery research.
Wydawca

Czasopismo
Rocznik
Strony
191--209
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
  • School of Geophysics, Chengdu University of Technology, Chengdu 610059, China
  • Sichuan Tourism University, Chengdu 610100, China
autor
  • School of Geophysics, Chengdu University of Technology, Chengdu 610059, China, wxb@cdut.edu.cn
autor
  • School of Computer and Network Security, Chengdu University of Technology, Chengdu 610059, China
  • School of Geophysics, Chengdu University of Technology, Chengdu 610059, China
autor
  • School of Geophysics, Chengdu University of Technology, Chengdu 610059, China
Bibliografia
  • 1. Aïfa T, Baouche R, Baddari K (2014) Neuro-fuzzy system to predict permeability and porosity from well log data: a case study of Hassi R׳Mel gas field, Algeria. J Pet Sci Eng 123:217–229
  • 2. Anifowose F, Abdulraheem A, Al-Shuhail A (2019) A parametric study of machine learning techniques in petroleum reservoir permeability prediction by integrating seismic attributes and wireline data. J Pet Sci Eng 176:762–774
  • 3. Ashrafi SB, Anemangely M, Sabah M, Ameri MJ (2019) Application of hybrid artificial neural networks for predicting rate of penetration (ROP): A case study from Marun oil field. J Pet Sci Eng 175:604–623
  • 4. Bai S, Kolter JZ, Koltun V (2018) An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271
  • 5. Bhattacharya S, Mishra S (2018) Applications of machine learning for facies and fracture prediction using Bayesian Network Theory and Random Forest: case studies from the Appalachian basin, USA. J Pet Sci Eng 170:1005–1017
  • 6. Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555
  • 7. Dauphin YN, Fan A, Auli M, Grangier D (2017) Language modeling with gated convolutional networks. In: Doina P, Whye TY (eds) Proceedings of the 34th international conference on machine learning, pp 933–941. Proceedings of Machine Learning Research: PMLR
  • 8. Elliott P (1996) New airborne electromagnetic method provides fast deep-target data turnaround. Lead Edge 15:309–310
  • 9. Esmaeilzadeh S, Salehi A, Hetz G, Olalotiti-Lawal F, Darabi H, Castineira D (2019) A general spatio-temporal clustering-based non-local formulation for multiscale modeling of compartmentalized reservoirs. In: SPE
  • 10. Esmaeilzadeh S, Salehi A, Hetz G, Olalotiti-Lawal F, Darabi H, Castineira D (2020) Multiscale modeling of compartmentalized reservoirs using a hybrid clustering-based non-local approach. J Pet Sci Eng 184:106485
  • 11. Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017a) Convolutional sequence to sequence learning. In: Doina P, Whye TY (eds) Proceedings of the 34th international conference on machine learning, pp 1243–1252. Proceedings of Machine Learning Research: PMLR
  • 12. Gehring J, Auli M, Grangier D, Dauphin YN (2017b) A convolutional encoder model for neural machine translation. arXiv:1611.02344
  • 13. Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM. Neural Comput 12:2451–2471
  • 14. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. The MIT Press, Cambridge
  • 15. Graves A, Mohamed AR, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: IEEE
  • 16. Hatampour A, Schaffie M, Jafari S (2018) ‘Hydraulic flow units’ estimation from seismic data using artificial intelligence systems, an example from a gas reservoir in the Persian Gulf. J Pet Sci Eng 170:400–408
  • 17. Hegde C, Gray K (2018) Evaluation of coupled machine learning models for drilling optimization. J Nat Gas Sci Eng 56:397–407
  • 18. Hinton GE, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov RR (2012) Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580
  • 19. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780
  • 20. Huang S, Cao Z, Yang H, Shen Z, Ding X (2020) An electromagnetic parameter retrieval method based on deep learning. J Appl Phys 127:224902
  • 21. Jiaqiang E, Yanping L, Shuhui W, Hao C, Xiaofeng H, Rongjia Z (2013) Thermal simulation on dynamic lithium-ion battery during charge and its grey relational analysis. J Central South Univ (Sci Technol) 44:998–1005
  • 22. Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of recurrent network architectures. In: Francis B, David B (eds) Proceedings of the 32nd international conference on machine learning, pp 2342–2350. Proceedings of Machine Learning Research: PMLR
  • 23. Julong D (1989) Introduction to grey system theory. J Grey Syst 1:1–24
  • 24. Kalchbrenner N, Espeholt L, Simonyan K, van den Oord A, Graves A, Kavukcuoglu K (2017) Neural machine translation in linear time. arXiv:1610.10099
  • 25. Khamehchi E, Rahimzadeh Kivi I, Akbari M (2014) A novel approach to sand production prediction using artificial intelligenc. J Pet Sci Eng 123:147–154
  • 26. Kovács P, Lehner B, Thummerer G, Mayr G, Burgholzer P, Huemer M (2020) Deep learning approaches for thermographic imaging. J Appl Phys 128:155103
  • 27. Lea C, Flynn MD, Vidal R, Reiter A, Hager GD (2017) Temporal convolutional networks for action segmentation and detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
  • 28. Liu Y, Huang X, Duan J, Zhang H (2017) The assessment of traffic accident risk based on grey relational analysis and fuzzy comprehensive evaluation method. Nat Hazards 88:1409–1422
  • 29. Liu Z, Chen H, Ren Z, Tang J, Xu Z, Chen Y, Liu X (2021) Deep learning audio magnetotellurics inversion using residual-based deep convolution neural network. J Appl Geophys 188:104309
  • 30. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)
  • 31. Min X, Pengbo Q, Fengwei Z (2020) Research and application of logging lithology identification for igneous reservoirs based on deep learning. J Appl Geophys 173:103929
  • 32. Mogi T, Kusunoki K, Kaieda H, Ito H, Jomori A, Jomori N, Yuuki Y (2009) Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai, north-eastern Japan. Explor Geophys 40:1–7
  • 33. Pascanu R, Gulcehre C, Cho K, Bengio Y (2014) How to construct deep recurrent neural networks. In: ICLR
  • 34. Puzyrev V (2019) Deep learning electromagnetic inversion with convolutional neural networks. Geophys J Int 218:817–832
  • 35. Rahimzadeh Kivi I, Zare-Reisabadi M, Saemi M, Zamani Z (2017) An intelligent approach to brittleness index estimation in gas shale reservoirs: a case study from a western Iranian basi. J Nat Gas Sci Eng 44:177–190
  • 36. Silversides K, Melkumyan A, Wyman D, Hatherly P (2015) Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposit. Comput Geosci 77:118–125
  • 37. Sorensen KI, Auken E (2003) New developments in high resolution airborne TEM instrumentation. ASEG Ext Abstr 2003:1–4
  • 38. Taki M, Rohani A, Soheili-Fard F, Abdeshahi A (2018) Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. J Clean Prod 172:3028–3041
  • 39. Temirchev P, Simonov M, Kostoev R, Burnaev E, Oseledets I, Akhmetov A, Margarit A, Sitnikov A, Koroteev D (2020) Deep neural networks predicting oil movement in a development unit. J Pet Sci Eng 184:106513
  • 40. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: a generative model for raw audio. arXiv:1609.03499
  • 41. Vrbancich J (2007) Bathymetry and sediment depth investigation in Broken Bay using a prototype AEM time domain system (SeaTEM). ASEG Ext Abstr 2007:1–13
  • 42. Wang J, Cao J, Yuan S (2020) Shear wave velocity prediction based on adaptive particle swarm optimization optimized recurrent neural network. J Pet Sci Eng 194:107466
  • 43. Witherly K, Irvine R, Morrison E (2004) The geotech VTEM time domain helicopter EM system. ASEG Ext Abstr 2004:1–4
  • 44. Wu Y, Zhang S, Zhang Y, Bengio Y, Salakhutdinov R (2016) On multiplicative integration with recurrent neural networks. arXiv:1606.06630
  • 45. Zerrouki AA, Aïfa T, Baddari K (2014) Prediction of natural fracture porosity from well log data by means of fuzzy ranking and an artificial neural network in Hassi Messaoud oil field, Algeria. J Pet Sci Eng 115:78–89
  • 46. Zhang S, Wu Y, Che T, Lin Z, Memisevic R, Salakhutdinov R, Bengio Y (2016) Architectural complexity measures of recurrent neural networks. In: NIPS
  • 47. Zhdanov MS (2009) Geophysical electromagnetic theory and methods. Elsevier, Amsterdam
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6cbf818b-c593-46d7-b5c5-8b2679c37194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.