Czasopismo
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Wpływ itru na wyniki badań termograwimetrycznych nowego nadstopu kobaltu typu Co-10Al-5Mo-2Nb
Języki publikacji
Abstrakty
Characterization of oxidation resistance of new type of cobalt based superalloys were presented in this investigations. As a referential material the Co-10Al-5Mo-2Nb (at.%) was used as the tungsten-free version of basic Co-7Al-7W alloy. The investigated alloy was modified by addition of yttrium on the level of 0.5 at.% due to expectation of improvement of it oxidation resistance. Both Co-based superalloys were casted in Institute of Materials Engineering of Silesian University of Technology in Poland. The oxidation performance of alloys were made during thermogravimetric investigations at temperature range from 25 to 1200°C. The main analyzed parameter was mass gain detected continuously during the test. After the test the overall and cross-sectional analysis of specimens was made. They included analysis of oxide layer morphology on the surface of specimens with characterization of phase constituent of oxide layer. The detailed analysis of oxidized layer was made by scanning electron microscopy method where distribution of alloying elements was made with special attentions on yttrium localization after the test in oxide zone. Obtained data showed that addition of Y has a strong influence on oxidation performance of new Co based superalloy. Those influence is demonstrated mainly by different morphology of final oxide zone with strong influence on Mo and Nb diffusion.
Przedstawiono wyniki badań dotyczące odporności na utlenianie nowych nadstopów kobaltu. Jako materiału referencyjnego użyto stopu Co-10Al-5Mo-2Nb (at.%), który jest bez-wolframową wersją stopu Co- -7Al-7W. Analizie poddano stop z dodatkiem itru w ilości 0,5 % at., którego rolą była poprawa odporności na utlenianie. Wszystkie analizowane materiały wytworzono w Instytucie Inżynierii Materiałowej Politechniki Śląskiej. Zachowanie się stopów w warunkach utleniania oceniano podczas testów termograwimetrycznych w zakresie temperatury 25°C- -1200°C. Podstawowym analizowanym parametrem była zmiana masy próbek. Po zakończeniu testów wykonano badania na zgładach metalograficznych, obejmujące analizę morfologii warstwy tlenkowej na warstwie wierzchniej stopu oraz scharakteryzowano ich skład fazowy. Szczegółową analizę budowy warstwy utlenionej dokonano w trakcie badań na skaningowym mikroskopie elektronowym, gdzie dokonano oceny rozkładu składników stopowych ze szczególnym uwzględnieniem lokalizacji itru w strefie utlenionej. Uzyskane wyniki wykazały, że wprowadzenie itru ma silny wpływ na wyniki badań termograwimetrycznych nowych nadstopów kobaltu, co objawiało się różnicami w morfologii warstwy utlenionej oraz silnym wpływem itru na dyfuzję Mo i Nb.
Czasopismo
Rocznik
Tom
Strony
328--332
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Institute of Materials Engineering, 40-019 Katowice, ul. Krasińskiego 8, Poland, grzegorz.moskal@polsl.pl
autor
- Silesian University of Technology, Institute of Materials Engineering, 40-019 Katowice, ul. Krasińskiego 8, Poland
autor
- Silesian University of Technology, Institute of Materials Engineering, 40-019 Katowice, ul. Krasińskiego 8, Poland
autor
- Silesian University of Technology, Institute of Materials Engineering, 40-019 Katowice, ul. Krasińskiego 8, Poland
autor
- Silesian University of Technology, Institute of Materials Engineering, 40-019 Katowice, ul. Krasińskiego 8
autor
- Silesian University of Technology, Department of Extractive Metallurgy and Environmental protection, 40-019 Katowice, ul. Krasińskiego 8, Poland
Bibliografia
- [1] Sato J., T. Omori, K. Oikawa. 2006. “Cobalt-base high-temperature alloys”. Science 312 (5770) : 90–91.
- [2] Pollock T.M., A.S. Argon. 1992. “Creep resistance of CMSX-3 nickel base superalloy single crystals”. Acta Metallurgica and Materiallia 40 (1) : 1–30.
- [3] Gong W., L. Zhang, D. Yao, C. Zhou. 2009. “Diffusivities and atomic mobilities in fcc Ni–Pt alloys”. Scripta Materiallia 61 (1) : 100–103.
- [4] Pollock T.M., J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki. 2010. “New Co-based γ-γ´ high temperature alloys”. JOM 62 (1) : 58-63.
- [5] Sullivan C.P. 1970. Cobalt Base Superalloys, Cobalt Monograph Series, Centre d`Information du Cobalt, Brussels.
- [6] Gabb C.P., R.L. Dreshfied in: C.T. Sims, N.S. Stoloff, W.C. Hagel (Eds.). 1987. Superalloys II, New York: Wiley.
- [7] Klein L., Y. Shen, M. Killian, S. Virtanen. 2011. “Effect of B and Cr on the high temperature oxidation behavior of novel γ-γ´ - strengthened Co-base superalloys”. Corrosion Science 53 : 2713-2720.
- [8] Klein L., A. Bauer, S. Neumeier, M. Goken M, S. Virtanen. 2011. “High temperature oxidation of γ-γ´ - strengthened Co-base superalloys”. Corrosion Science 53 (5) : 2027-2034.
- [9] Klein L., M. Killian, S. Virtanen. 2012. “The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys”. Corrosion Science 69 (2012) 43-49.
- [10] Yan H.-Y., V. Vorontsov, D. Dye. 2014. “Effect of alloying on the oxidation behavior of Co-Al-W superalloys”. Corrosion Science 83 : 382-395.
- [11] Stewart C., R. Rhein, A. Suzuki, T.M. Pollock, C. Levi. 2016. “Oxide scale formation in novel γ-γ´ Cobalt-based alloys”, in: Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, Edited by: Mark Hardy, Eric Huron, Uwe Glatzel, Brian Griffin, Beth Lewis, Cathie Rae, Venkat Seetharaman, and Sammy Tin TMS (The Minerals, Metals & Materials Society) : 991-999.
- [12] Xu Y.T., T.D. Xia, J.Q. Yan, W.J. Zhao. 2010. “Effect of alloying elements on oxidation behavior of Co–Al–W alloys at high temperature”. Chinese Journal of Non-Ferrous Metallurgy 20 : 2168–2177.
- [13] Yan H.Y., V.A. Vorontsov, D. Dye. 2014. “Alloying effects in polycrystalline γ´-strengthened Co-Al-W base alloys”. Intermetallics 48 : 44–53.
- [14] Klein L., S. Virtanen. 2013. “Corrosion properties of novel γ´-strengthened Cobase superalloys”. Corrosion Science 66 : 233–241.
- [15] Xue F., M. Wang, Q. Feng. 2012. “Alloying effects on heat-treated microstructure in Co-Al-W base superalloys at 1300°C and 900°C” in: Superalloys 2012, John Wiley & Sons, Inc., Warrendale, PA : 813–821.
- [16] Bauer A., S. Neumeier, F. Pyczak, M. Goken. 2012. “Creep strength and microstructure of polycrystalline γ-γ´ strengthened Co-base superalloys” in: Superalloys 2012, John Wiley & Sons Inc., Warrendale, PA : 695–703.
- [17] Zhong F., F. Fan, S. Li, J. Sha. 2016. “High-temperature oxidation behaviour of novel Co-Al-W-Ta-B-(Mo, Hf, Nb) alloys with a coherent γ/γ’–dominant microstructure”. Progress in Natural Science: Materials International 26 (6) : 600–612.
- [18] Wang Q., Q. Yao, J-Z. Song, Y. Wang, Y.-H. Zhu, T. Lu, B-J. Han. 2018. “Effect of rare earth element on the oxidation behavior of novel γ/γ’-strengthened Co-9Al-10W alloys”. Journal of Materials Research 32 (11) : 2117-2126.
- [19] Nakamura Y. 1975. “The oxidation behavior of an iron-nickel alloy containing yttrium or rare earth elements between 900°C and 1200°C”. Metallurgical and Materials Transactions A 6 : 2217-2220.
- [20] Shi Z., S. Liu, M. Han, J. Li. 2013. “Influence of yttrium addition on high temperature oxidation resistance of single crystal superalloy”. Journal of Rare Earths 31(8) : 795-799.
- [21] Ramanathan L.V. 1993. “Role of rare-earth elements on high temperature oxidation behavior of FeCr, Ni-Cr and Ni-Cr-Al alloys”. Corrosion Science 35 (5-8) : 871-878.
- [22] Stringer J. 1989. “The reactive element effect in high-temperature corrosion”. Materials Science and Engineering: A 120-121 : 129-137.
- [23] Hou P. Y. 2011. “The Reactive Element Effect – Past, Present and Future”. Materials Science Forum 696 : 39-44.
- [24] Wang W., Q. Yao, Y. Wang, Y.-H. Zhu, T. L. 2018. “Research on the oxidation behavior of novel γ/γ’-strengthened Co-9Al-10W alloys combined with chromium and rare earth elements”. Journal of Materials Research 31 (21) : 3332-3344.
- [25] Forsik S.A.J. et al. 2018. “High-Temperature Oxidation Behavior of a Novel Co-Base Superalloy”. Metallurgical and Materials Transactions A 49 : 4058-4069.
Uwagi
This work was supported by the National Science Centre, Poland, under grant number 11/030/PBU17/0176.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6c3f7d47-412a-4e02-a2e2-69e15d47ddf3