Czasopismo
Tytuł artykułu
Warianty tytułu
Biogas and Bioniethane: Potential and Challenges in the Context Of Energy Transformation
Języki publikacji
Abstrakty
Gaz ziemny jest podstawowym źródłem energii, odpowiadającym za około 20% światowej produkcji energii. Jest on również kluczowym elementem strategii redukcji emisji CO2 ze względu na jego kluczową rolę w stabilizacji odnawialnych źródeł energii (OZE). Jednocześnie zużycie gazu ziemnego jako paliwa kopalnego emitującego CO2 powinno być ograniczane. Alternatywnym paliwem spełniającym wymaganie zeroemisyjności, które może zapewnić stabilizację OZE i jednocześnie zmniejszyć zapotrzebowanie na paliwa kopalne jest biogaz (BG). Skuteczne wykorzystanie BG wymaga dokładnego poznania potencjału produkcji, struktury i specyfiki jego źródeł oraz technologii produkcji i uzdatniania. Prezentowane opracowanie przedstawia perspektywę i krótki przegląd istniejącego potencjału produkcji BG. Wykazano, że prawie 90% polskiego potencjału produkcji BG pochodzi ze źródeł o wydajności poniżej 100 Nm3/h, co stanowi obecnie minimalną komercyjnie dostępną wydajność technologii oczyszczania i skraplania BG. W związku z tym pełne wykorzystanie źródeł BG wymaga działań zmierzających do konsolidacji źródeł, odpadów z rozproszonych źródeł, reorganizacji logistyki odpadów lub przeskalowania istniejących technologii do produkcji i uzdatniania biogazu.
Natural gas is a primary source of energy, accounting for about 20% of global energy production. It is also a key component of CO; reduction strategies due to its key role in stabilizing renewable energy sources (RES). At the same time, the use of natural gas as a COg—emitting fossil fuel Should be reduced. An alternative fuel that meets the zero—carbon requirement and can ensure the stabilization of RES while reducing the need for fossil fuels is biogas (BG). Effective use of BG requires a thorough understanding of the production potential, the structure and specifics of its sources, as well as production and treatment technologies. The presented study provides a perspective and a brief overview of the existing BG production potential. It is shown that almost 90% of Polish BG production potential comes from sources with a capacity of less than 100 Nm3/h, which is currently the minimum commercially available capacity of BG treatment and liquefaction technologies. Therefore, full utilization of BG sources requires efforts to consolidate sources, disperse waste, reorganize waste logistics or scale up existing technologies for BG production and treatment.
Czasopismo
Rocznik
Tom
Strony
40--48
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
autor
- Politechnika Wrocławska, zbigniew.rogala@pwr.edu.pl
autor
- Politechnika Wrocławska, michal.stancil@pwr.edu.pl
autor
- Politechnika Wrocławska, dariusz.luszkiewicz@pwr.edu.pl
autor
- Politechnika Wrocławska, ziemowit.malecha@pwr.edu.pl
autor
- Politechnika Wrocławska, maciej.chorowski@pwr.edu.pl
Bibliografia
- [1] Sónnichsen, N. Natural gas share in electricity production worldwide from 2000 to 2021.
- [2] Banaszkiewicz, T.; Chorowski, M.; Gizicki, W.; Jedrusyna, A.; Kielar, J.; Malecha, Z.; Piotrowska, A.; Polinski, J.; Rogala, Z.; Sierpowski, K.; et al. Liquefied natural gas in mobile applications—opportunities and challenges. Energies 2020, 13, 1—35. https://doi.org/10.3390/en13215673.
- [3] DNV—GL. LNG As Ship Fuel the Future — Today. DNV-GL 2014, pp. 1—56.
- [4] Ministerstwo Klimatu, Sprawozdanie z wyników monitorowania bezpieczeństwa dostaw paliw gazowych za okres od dnia 1 stycznia 2019 do dnia 31 grudnia 2019, Warszawa, 2020
- [5] Wilczewski, V.Z.W. Europe relies primarily on imports to meet its natural gas needs, 2022. Version November 14, 2022 submitted to Energies 11 of 12
- [6] Gallego—Castillo, C.; Heleno, M.; Victoria, M. Self-consumption for energy communities in Spain: A regional analysis under the new legal framework. Energy Policy 2021, 150, 112144. https://doi.org/https://doi.org/10.1016/j.enpol.2021.112144.
- [7] Malecha, Z. Risks for a Successful Transition to a Net-Zero Emissions Energy System. Energies 2022, 15. https://doi.org/10.3390/en15114071. BIOGAS AND BIONIETHANE: POTENTIAL AND CHALLENGES
- IN THE CONTEXT OF ENERGY TRANSFORMATION
- [8] DTI. Capital grants scheme for North Hoyle offshore wind farm. Technical report, UK Government, 2006.
- [9] DTI. Capital grants scheme for Scroby Sands offshore wind farm. Technical report, UK Government, 2006.
- [10] Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. Wind Energy Handbook; Wiley, 2011.
- [11] Hansen, K.S.; Barthelmie, R.J.; Jensen, L.E.; Sommer, A. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm. Wind Energy 2012, 15, 183-196. https://doi.org/https: //doi.org/10.1002/we.512.
- [12] Dahlberg, J .A..; Thor, S.E.. Power performance and wake effects in the closely spaced Lillgrund offshore wind farm. European Offshore Conference, Stockholm 2009, p. 1.
- [13] Gonzalez—Salazar, M.A.; Kirsten, T.; Prchlik, L. Review of the operational flexibility and emissions of gas- and coal—tired power plants in a future with growing renewables. Renewable and Sustainable Energy Reviews 2018, 82, 1497—1513. https://doi.org/10.1016/j.rser.2017.05.278.
- [14] Milewski, J.; Badyda, K.; Miller, A. Gas Turbines in Unconventional Applications. Efficiency, Performance and Robustness of Gas Turbines 2012. https://doi.org/10.5772/37321.
- [15] Giirsan, C.; de Gooyert, V. The systemic impact of a transition fuel: Does natural gas help or hinder the Energy transition? Renewable and Sustainable Energy Reviews 2021, 138, 1 10552. https://doi.org/10.1016/j.rser.2020.1 10552.
- [16] European Union. Circular Economy Action Plan. Technical report, Publications Office of the European Union, Luxembourg, 2020. https://doi.org/ 1 0.2779/05068.
- [17] United Nations. The sustainable development goals report 2022. Technical report, United Nations, New York, 2022.
- [18] Ciuła J., Kozik V., Generowicz A., Gaska K., Bak K., Paździor M., Barbusiński K.: Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies 2020, 13. https: //doi.org/10.3390/en13236254.
- [19]UN Environment Programme. Benefits and costs of mitigating methane emissions | Climate Clean Air Coalition; 2022.
- [20] Weissbach, D..; Herrmann, F..; Ruprecht, G..; Huke, A..; Czerski, K..; Gottlieb, S..; Hussein, A.. Energy intensitites, EROI (energy returned on invested), for electric energy sources. EPJ Web Conf. 2018, 189,00016. https://doi.org/10.1051/epjconf/201818900016.
- [21] Kondziella, H.; Bruckner, T. Flexibility requirements of renewable energy based electricity systems — a review of research results and methodologies. Renewable and Sustainable Energy Reviews 2016, 53, 10—22. https://doi.org/https://d'oi.org/10. 1016/j.rser.20 15.07.199.
- [22] Huber, M.; Dimkova, D.; Hamacher, T. Integration of wind and solar power in Europe: Assessment of flexibility requirements. Energy 2014, 69, 236—246. https://doi.org/https://doi.org/10.1016/j.energy.2014.02.109.
- [23] Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 2013, 52, 210—221. https://doi.org/https://doi.org/10.1016/j.energy.2013.01.029.
- [24] Capellan-Pe'rez, I.; de Castro, C.; Miguel Gonzalez, L.J. Dynamic Energy Return on Energy Investment (EROI) and material requirements in scenarios of global transition to renewable energies. Energy Strategy Reviews 2019, 26, 100399. https://doi.org/ https://doi.org/10.1016/j.esr.2019.100399.
- [25] DNV. MARITIME FORECAST TO 2050: Energy Transition Look 2022. Technical report.
- [26] MARITIME EXECUTIVE. DNV: Orders for LNG—Fueled Ships at Record Pace.
- [27] Europe, N. NGVA Europe has published 2020 gas vehicle statistics and Europe has reached a new gas refuelling infrastructure milestone 2021. pp. 0—3. '
- [28] Chehade, G.; Dincer, I. Progress in green ammonia production as potential carbon-free fuel. Fuel 2021, 299, 120845. https: //doi.org/1 0.1016/j.fuel.202l . 120845.
- [29] GROUP TECHNOLOGY RESEARCH, D.G. AMMONIA AS A MARINE FUEL. Technical report, DNVGL, 2020.
- [30] Machaj, K.; Kupecki, J.; Malecha, Z.; Morawski, A.; Skrzypkiewicz, M.; Stanclik, M.; Chorowski, M. Ammonia as a potential marine fuel: A review. Energy Strategy Reviews 2022, 44, 100926. https://doi.org/10. 1016/j.esr.2022. 100926.
- [31] International Energy Agency. The Future of Trucks Implications for energy and the environment. Technical report, International Energy Agency, 2017.
- [32] Bertilsson, O.B.; Kirchmann, H. Sustainable N fertilizer production based on a loop : Straw — biogas — ‘ Haber -Bosch ’ process 2021. 190. https://doi.org/10.1016/j.agsy.2021.103100.
- [33] Alberici, S.; Grimme, W.; Toop, G. A Gas for Climate report - Biomethane production potentials in the EU 2022.
- [34] National Energy and Climate Plan for the years 2021-2030. Technical report, Ministry of Climate and Environment, 2019.
- [35] Piechota, G.; Igli 'nski, B. Biomethane in Poland—Current Status, Potential, Perspective and Development. Energies 2021, 14. https://doi.org/10.3390/en14061517. .
- [36] Głodek-Bucyk, E.; Janecka, L. Pozyskiwanie i energetyczne wykorzystanie biogazu rolniczego; Wydawnictwo Instytut [Sl aski, 2007.
- [37] Housing economy and municipal infrastructure in 2020.Technical report, Statistics Poland, 2021.
- [38] VI update of the National Municipal Wastewater Treatment Program. Technical report, Ministry of Infrastructure, 2022.
- [39] General agricultural census in 2020. Technical report, Statistics Poland, 2021. Version November 14, 2022 submitted to Energies 12 of 12
- [40] Bauer, F.; Hulteberg, C.P. Biogas upgrading—Review of commercial technologies. Technical report, 2013.
- [41] Bekkering, J.; Broekhuis, A.; van Gemert, W. Optimisation of a green gas supply chain — A review. Bioresource Technology 2010, 101, 450—456. https://doi.org/https://doi.org/10.1016/j.biortech.2009.08.106.
- [42] Cavenati, S.; Grande, C.; Rodrigues, A.; Kiener, C.; Muller, U. Metal organic framework adsorbent for biogas upgrading. Industrial and Engineering Chemistry Research 2008, 47, 6333—6335. Generated from Scopus record by KAUST IRTS on 2022-09-13, https://doi.org/10.1021/ie8005269.
- [43] Nock, W.J.; Walker, M.J.; Kapoor, R.; Heaven, S. Modeling the Water Scrubbing Process and Energy Requirements for CO2 Capture to Upgrade Biogas to Biomethane. Industrial & Engineering Chemistry Research 2014, 53, 12783—12792.
- [44] Arrhenius, K. Characterisation of contaminants in biogas before and after upgrading to vehicle gas Rapport :: SGC 246. 2012.
- [45] Petersson, A.; Wellinger, A. Biogas upgrading technologies—developments and innovations Task 37—Energy from biogas and landfill gas. Technical report.
- [46] Baker, R.W. Membrane Technology and Applications, Second Edition. 2004.
- [47] Lemmon, EW.; Bell, LH.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology, 2018. https:// doi.org/https://doi.org/ l 0.1 8434/T4/ ] 5 02528.
- [48] Bishnoi, S.; Rochelle, G.T. Absorption of carbon dioxide in aqueous piperazine/methyldiethanolamine. Aiche Journal 2002,48, 2788—2799.
- [49] Pan, X.; Clodic, D.; Toubassy, J. C02 capture by antisublimation process and its technical economic analysis. Greenhouse Gases: Science and Technology 2013, 3, 8—20, [https://on1inelibrary.wiley.com/doi/ pdf/10.1002/ghg.1313]. https://doi.org/https: //doi.org/10.1002/ghg.1313.
- [50] Capra, F.; Magli, F.; Gatti, M. Biomethane liquefaction: A systematic comparative analysis of refrigeration technologies. Applied Thermal Engineering 2019, 158, 113815. https://doi.org/10.1016/ j.appltherma1eng.2019.l13815.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6c2f0f4e-3f18-4bf3-ad20-f372991b8eea