Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 155, nr 4 | 321--340
Tytuł artykułu

Reconstructing Binary Matrices under Window Constraints from their Row and Column Sums

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper deals with the discrete inverse problem of reconstructing binary matrices from their row and column sums under additional constraints on the number and pattern of entries in specified minors. While the classical consistency and reconstruction problems for two directions in discrete tomography can be solved in polynomial time, it turns out that these window constraints cause various unexpected complexity jumps back and forth from polynomialtime solvability to NP-hardness.
Wydawca

Rocznik
Strony
321--340
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München, Germany, alpers@ma.tum.de
  • Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München, Germany, gritzman@tum.de
Bibliografia
  • [1] Ryser HJ. Combinatorial properties of matrices of zeros and ones. Canad. J. Math., 1957. 9(1):371–377. doi:10.1007/978-0-8176-4842-8_18.
  • [2] Schwander P, Kisielowski C, Baumann FH, Kim Y, Ourmazd A. Mapping projected potential, interfacial roughness, and composition in general crystalline solids by quantitative transmission electron microscopy. Phys. Rev. Lett., 1993. 71(25):4150–4153. doi:10.1103/PhysRevLett.71.4150.
  • [3] Kisielowski C, Schwander P, Baumann FH, Seibt M, Kim Y, Ourmazd A. An approach to quantitative high-resolution transmission electron microscopy of crystalline materials. Ultramicroscopy, 1995. 58(2):131–155. doi:10.1016/0304-3991(94)00202-X.
  • [4] Gardner RJ, Gritzmann P. Discrete tomography: Determination of finite sets by X-rays. Trans. Amer. Math. Soc., 1997. 349(6):2271–2295. doi:10.1090/S0002-9947-97-01741-8.
  • [5] Gritzmann P. On the Reconstruction of Finite Lattice Sets from their X-Rays. In: Discrete Geometry for Computer Imagery (Eds.: E. Ahronovitz and C. Fiorio), DCGI’97, Lecture Notes on Computer Science 1347, Springer. 1997 pp. 19–32. doi:10.1007/BFb0024827.
  • [6] Aert SV, Batenburg KJ, Rossell MD, Erni R, Tendeloo GV. Three-dimensional atomic imaging of crystalline nanoparticles. Nature, 2011. 470(7334):374–376. doi:doi:10.1038/nature09741.
  • [7] Herman GT, Kuba (eds) A. Discrete Tomography: Foundations, Algorithms and Applications. Birkhäuser, Boston, 1999. ISBN 978-0-8176-4101-6. doi:10.1007/978-1-4612-1568-4.
  • [8] Herman GT, Kuba (eds) A. Advances in Discrete Tomography and its Applications. Birkhäuser, Boston, 2007. ISBN 978-0-8176-3614-2. doi:10.1007/978-0-8176-4543-4.
  • [9] Fishburn P, Lagarias J, Reeds J, Shepp L. Sets uniquely determined by projections on axes. II: Discrete case. Discrete Math., 1991. 91(2):149–159. doi:10.1016/0012-365X(91)90106-C.
  • [10] Aharoni R, Herman GT, Kuba A. Binary vectors partially determined by linear equation systems. Discrete Math., 1997. 171(1-3):1–16. doi:10.1016/S0012-365X(96)00068-4.
  • [11] Gritzmann P, Langfeld B, Wiegelmann M. Uniqueness in Discrete Tomography: Three Remarks and a Corollary. SIAM J. Discrete Math., 2011. 25(4):1589–1599. doi:10.1137/100803262.
  • [12] Alpers A, Gritzmann P. Dynamic discrete tomography, 2017. Manuscript.
  • [13] Alpers A, Gritzmann P, Moseev D, Salewski M. 3D Particle Tracking Velocimetry using Dynamic Discrete Tomography. Comput. Phys. Commun., 2015. 187(1):130–136. doi:10.1016/j.cpc.2014.10.022.
  • [14] Zhu J, Gao J, Ehn A, Aldén M, Li Z, Moseev D, Kusano Y, Salewski M, Alpers A, Gritzmann P, Schwenk M. Measurements of 3D Slip Velocities and Plasma Column Lengths of a Gliding Arc Discharge. Appl. Phys. Lett., 2015. 106(4):044101–1–4. doi:10.1063/1.4906928.
  • [15] Alpers A, Gritzmann P. On double-resolution imaging and discrete tomography, 2017. Submitted, URL http://arxiv.org/abs/1701.04399.
  • [16] Schrijver A. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester, UK, 1986. ISBN 0-471-90854-1.
  • [17] Dürr C, Guiñez F, Matamala M. Reconstructing 3-Colored Grids from Horizontal and Vertical Projections is NP-Hard: A Solution to the 2-Atom Problem in Discrete Tomography. SIAM J. Discrete Math, 2012. 26(1):330–352. doi:10.1137/100799733.
  • [18] Cook SA. The complexity of theorem-proving procedures. In: Proc. 3rd Ann. ACM Symp. Theory of Computing. ACM, 1971 pp. 151–158. doi:10.1145/800157.805047.
  • [19] Frosini A, Nivat M. Binary matrices under the microscope: A tomographical problem. Theor. Comput. Sci., 2007. 370(1-3):201–217. doi:10.1016/j.tcs.2006.10.030.
  • [20] Frosini A, Nivat M, Rinaldi S. Scanning integer matrices by means of two rectangular windows. Theor. Comput. Sci., 2008. 406(1-2):90–96. doi:10.1016/j.tcs.2008.07.016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6c24dc4c-80bb-427f-be6f-4e4e7dd82f7d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.