Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 33 | 135--140
Tytuł artykułu

Development of a Smart System for Early Detection of Forest Fires based on Unmanned Aerial Vehicles

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The naturally occurring wildfires and the peoplerelated forest fires are events, which in many cases have significant impact on the environment, the wildlife and the human population. The most devastating among these events usually start in unpopulated remote areas, which are difficult to inspect or are not constantly being monitored or observed. This gives the local small-sized fires enough time to evolve into fullscale wide-area disasters, which in turn makes their suppression and extinguishing very difficult. In this paper, we present an autonomous system for early detection of forest fires, named THEASIS-M. The presented system represents a solution that is based on a combination of innovative technologies, including computer vision algorithms, artificial intelligence and unmanned aerial vehicles. In the first part of the study, we provide an overview on the present applications of the UAVs in the forestry domain. The paper then introduces the general architecture of the THEASIS-M system and its components. The system itself is fully autonomous and is based on several different types of UAVs, including a fixedwing drone, which provides the overall forest monitoring capabilities of the proposed solution, and a rotary-wing UAV that is used for confirmation and monitoring of the detected fire event. The widely used technologies for computer vision and image processing, which are used for the detection of fire and smoke in the realtime video streams sent from the UAVs to the ground control station, are highlighted in the next section of this study. Finally, the experimental tests and demonstrations of the proposed THEASISM system are presented and briefly discussed.
Wydawca

Rocznik
Tom
Strony
135--140
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
  • Department of Telecommunications University of Ruse "Angel Kanchev" Ruse, Bulgaria, ghristov@uni-ruse.bg
autor
  • Faculty of Science & Engineering University of Greenwich Kent, United Kingdom, c.h.le@gre.ac.uk
autor
  • Institute of Engineering & Technology Thu Dau Mot University Binh Duong, Vietnam, quangnh@tdmu.edu.vn
autor
  • Faculty of Science & Engineering University of Greenwich Kent, United Kingdom, j.gao@gre.ac.uk
  • Department of Science & Technology Saigon Hi-Tech Park Ho Chi Minh City, Vietnam, hlminh.shtp@gmail.com
  • College of Engineering, Universiti Teknologi MARA, Shah Alam Selangor, Malaysia, jm@uitm.edu.my
  • Department of Telecommunications University of Ruse "Angel Kanchev" Ruse, Bulgaria, pzahariev@uni-ruse.bg
autor
  • Institute of Simulation Technology, Le Quy Don Technical University Hanoi, Vietnam, myca@lqdtu.edu.vn
  • Faculty of Mechanical Engineering Hung Yen University of Technology and Education. Hung Yen, Vietnam, buitrungthanh@gmail.com
Bibliografia
  • [1] S. Sudhakar et al. (2020) Unmanned Aerial Vehicle (UAV) based forest fire detection and monitoring for reducing false alarms in forest fires. Computer Communications: 149, 2020, pp. 1-16. https://doi.org/10.1016/j.comcom.2019.10.007
  • [2] Thiel C. et al. (2020) Monitoring selective logging in a pine-dominated forest in central Germany with repeated drone flights utilizing a low cost RTK quadcopter. Drones 2020, 4, 11. https://doi.org/10.3390/drones4020011
  • [3] Sharifah M. S. M. D. et al. (2020) Applications of drone in disaster management: A scoping review. Science & Justice: 62 (1), 2022, pp. 30-42. https://doi.org/10.1016/j.scijus.2021.11.002.
  • [4] Abderahman Rejeb et al. (2022) Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture: 198, 2022, 107017. https://doi.org/10.1016/j.compag.2022.107017
  • [5] Zilong Wang et al. (2022) Predicting transient building fire based on external smoke images and deep learning. Journal of Building Engineering: 47 (15), 2022, 103823. https://doi.org/10.1016/j.jobe.2021.103823
  • [6] Ali Hosseini, Mahdi Hashemzadeh and Nacer Farajzadeh (2022). UFS-Net: A unified flame and smoke detection method for early detection of fire in video surveillance applications using CNNs. Journal of Computational Science: 61, 2022, 101638. https://doi.org/10.1016/j.jocs.2022.101638
  • [7] Seong G.Kong et al. (2016) Fast fire flame detection in surveillance video using logistic regression and temporal smoothing. Fire Safety Journal: 79, 2016, pp. 37-43. https://doi.org/10.1016/j.firesaf.2015.11.015
  • [8] G. D. Georgiev et al. (2020) Forest Monitoring System for Early Fire Detection Based on Convolutional Neural Network and UAV imagery. In proceeding of 28th National Conference with International Participation TELECOM-2020, pp. 57-60. DOI: 10.1109/TELECOM50385.2020.9299566
  • [9] D. Kinaneva et al. (2020) An artificial intelligence approach to real-time automatic smoke detection by unmanned aerial vehicles and forest observation systems. 2020 International Conference on Biomedical Innovations and Applications (BIA): 2020, pp. 133-138, doi: 10.1109/BIA50171.2020.9244498
  • [10] ALTi Transition-F vertical take-off and landing (VTOL) fixed-wing UAV. Available at: www.altiuas.com [Access: 9/2022].
  • [11] NightHawk 2 EO/IR camera. Available at: www.nextvisionsys.com/nighthawk-2 [Access: 9/2022].
  • [12] The DJI Matrice 210 RTK unmanned aerial vehicle. Available at: www.dji.com [Access: 9/2022].
  • [13] The Zenmuse XT2 thermal camera. Available at: www.heliguy.com [Access: 9/2022].
  • [14] S.Karma et al. (2015) Use of unmanned vehicles in search and rescue operations in forest fires: Advantages and limitations observed in a field trial. International Journal of Disaster Risk Reduction: 13, 2015, pp. 307-312, https://doi.org/10.1016/j.ijdrr.2015.07.009
  • [15] M. Mohan, C.A. Silva, C. Klauberg, P. Jat, G. Catts, A. Cardil, A.T. Hudak, and M. Dia (2017) Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forests 8(9):340, https://doi.org/10.3390/f8090340
  • [16] C. L. Scher, E. Griffoul and C. H. Cannon (2019) Drone-based photogrammetry for the construction of high-resolution models of individual trees. Trees vol. 33/2019, pp. 138531397. https://doi.org/10.1007/s00468-019-01866-x
  • [17] J. Li, B. Yang, Y. Cong, L. Cao, X. Fu and Z. Dong (2019) 3D Forest Mapping Using A Low-Cost UAV Laser Scanning System: Investigation and Comparison. Remote Sensing, 11(6):717 2019, https://doi.org/10.3390/rs11060717
  • [18] M. Pierzchała, P. Giguère, R. Astrup (2018) Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM. Computers and Electronics in Agriculture, Volume 145, 2018, pp. 217-225, ISSN 0168-1699, https://doi.org/10.1016/j.compag.2017.12.034
  • [19] Official webpage of the SFEDA transnational project. Available at: www.interreg-balkanmed.eu/approved-project/22/ [Access: 9/2022].
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6c18aee5-6d4b-4be0-a4ad-69af477d1e66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.