Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 61, no 2 | 169--180
Tytuł artykułu

Moment Inequality for the Martingale Square Function

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Consider the sequence (Cn)n≥1 of positive numbers defined by C1=1 and Cn+1=1+C2n/4, n=1,2,…. Let M be a real-valued martingale and let S(M) denote its square function. We establish the bound E|Mn|≤CnESn(M), n=1,2,…, and show that for each n, the constant Cn is the best possible.
Wydawca

Rocznik
Strony
169--180
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Department of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland, ados@mimuw.edu.pl
Bibliografia
  • [1] B. Bollobás, Martingale inequalities, Math. Proc. Cambridge Philos. Soc. 87 (1980), 377–382.
  • [2] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms, Ann. Probab. 12 (1984), 647–702.
  • [3] D. L. Burkholder, Explorations in martingale theory and its applications, in: École d’Été de Probabilités de Saint-Flour XIX—1989, Lecture Notes in Math. 1464, Springer, Berlin, 1991, 1–66.
  • [4] D. L. Burkholder, The best constant in the Davis inequality for the expectation of the martingale square function, Trans. Amer. Math. Soc. 354 (2002), 91–105.
  • [5] D. C. Cox, The best constant in Burkholder’s weak-L1 inequality for the martingale square function, Proc. Amer. Math. Soc. 85 (1982), 427–433.
  • [6] D. C. Cox, Some sharp martingale inequalities related to Doob’s inequality, in: Inequalities in Statistics and Probability, IMS Lecture Notes Monogr. Ser. 5, Inst. Math. Statist., Hayward, CA, 1984, 78–83.
  • [7] D. C. Cox and J. H. B. Kemperman, On a class of martingale inequalities, J. Multivariate Anal. 13 (1983), 328–352.
  • [8] J. H. B. Kemperman, The general moment problem; a geometric approach, Ann. Math. Statist. 39 (1968), 93–122.
  • [9] A. Khintchine, Über dyadische Brüche, Math. Z. 18 (1923), 109–116.
  • [10] J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. Math. Oxford 1 (1930), 164–174.
  • [11] J. Marcinkiewicz, Quelques théorèmes sur les séries orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84–96.
  • [12] A. Osękowski, Two inequalities for the first moments of a martingale; its square function and its maximal function, Bull. Polish Acad. Sci. Math. 53 (2005), 441–449.
  • [13] A. Osękowski, Sharp Martingale and Semimartingale Inequalities, IMPAN Monogr. Mat. 72, Birkhäuser, Basel, 2012.
  • [14] R. E. A. C. Paley, A remarkable series of orthogonal functions I , Proc. London Math. Soc. 34 (1932), 241–264.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6bf70138-091b-4e78-9c01-2a935c38c5a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.