Czasopismo
2017
|
Vol. 24, nr 2
|
277--284
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Woltamperometryczne oznaczanie Aklonifenu za pomocą amalgamatowej elektrody srebrnej w wodzie pitnej i rzecznej
Języki publikacji
Abstrakty
A method for the determination of pesticide Aclonifen (AC) in drinking and river water by differential pulse voltammetry (DPV) on a meniscus modified silver solid amalgam electrode (m-AgSAE) using solid phase extraction (SPE) as a cleanup and preconcentration procedure is described. The limit of detection (LOD) for direct DPV determination of AC in deionized water is 2.7·10-8 mol·dm-3. LOD for DPV determination of AC in tap water after SPE is 1.6·10-10 mol·dm-3, the recovery being 55%. LOD for the determination of AC in Vltava river water is 1.9·10-9 mol·dm-3, the recovery being 65%. Humic acids interfere with the determination in river water; this problem can be resolved by adjusting the pH of the extracted sample to 6. The advantages of this approach are high sensitivity, low LOD, quick and easy sample preparation and fast determination.
Czasopismo
Rocznik
Tom
Strony
277--284
Opis fizyczny
Bibliogr. 29 poz., wykr., tab.
Twórcy
autor
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, Czech Republic, vit.novotny@tul.cz
autor
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Bendlova 1407/7 Liberec, Czech Republic
Bibliografia
- [1] Cobucci T, Prates HT, Falcão CLM, Rezende MMV. Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Sci. 1998;46(2):258-263. http://www.jstor.org/stable/4045945.
- [2] Drewes M, Tietjen K, Sparks TC. High-Throughput Screening in Agrochemical Research. In: Jeschke P, Krämer W, Schirmer U, Witschel M, editors. Modern Methods in Crop Protection Research. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.; 2013.
- [3] Kilinc Ö, Reynaud S, Perez L, Tissut M, Ravanel P. Physiological and biochemical modes of action of the diphenylether aclonifen. Pestic Biochem Physiol. 2009;93:65-71. DOI: 10.1016/j.pestbp.2008.11.008.
- [4] Scrano L, Bufo SA, D’Auria M, Meallier P, Behechti A, Shramm KW. Photochemistry and photoinduced toxicity of acifluorfen, a diphenyl-ether herbicide. J Environ Qual. 2002;31:268-274. DOI: 10.2134/jeq2002.0268.
- [5] Teshima R, Nakamura R, Nakajima O, Hachisuka A, Sawada J-I. Effect of two nitrogenous diphenyl ether pesticides on mast cell activation. Toxicol Lett. 2004;150:277-283. DOI: 10.1016/j.toxlet.2004.02.001.
- [6] Francis BM, Metcalf RL, Lewis PA, Chernoff N. Maternal and developmental toxicity of halogenated 4'-nitrodiphenyl ethers in mice. Teratology. 1999;59:69-80. DOI: 10.1002/(SICI)1096-9926(199902)59: 2<69::AID-TERA1>3.0.CO;2-I.
- [7] Laganà A, Fago G, Fasciani L, Marino A, Mosso M. Determination of diphenyl-ether herbicides and metabolites in natural waters using high-performance liquid chromatography with diode array tandem mass spectrometric detection. Anal Chim Acta. 2000;414:79-94. DOI: 10.1016/S0003-2670(00)00813-8.
- [8] Sheu H-L, Sung Y-H, Melwanki MB, Huang S-D. Determination of diphenylether herbicides in water samples by solid-phase microextraction coupled to liquid chromatography. J Sep Sci. 2006;29:2647-2652. DOI: 10.1002/jssc.200600155.
- [9] Pang G-F, Liu Y-M, Fan C-L, Zhang J-J, Cao Y-Z, Li X-M, et al. Simultaneous determination of 405 pesticide residues in grain by accelerated solvent extraction then gas chromatography-mass spectrometry or liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2006;384:1366-1408. DOI: 10.1007/s00216-005-0237-9.
- [10] Perreau F, Einhorn J. Determination of frequently detected herbicides in water by solid-phase microextraction and gas chromatography coupled to ion-trap tandem mass spectrometry. Anal Bioanal Chem. 2006;386:1449-1456. DOI: 10.1007/s00216-006-0693-x.
- [11] Sagratini G, Ametisti M, Canella M, Cristalli G, Francoletti E, Giardina D, et al. Well water in central Italy: Analysis of herbicide residues as potential pollutants of untreated crops. Fresenius Environ Bull. 2007;16:973-979.
- [12] Cervera MI, Portoles T, Lopez FJ, Beltran J, Hernandez F. Screening and quantification of pesticide residues in fruits and vegetables making use of gas chromatography/quadrupole time-of-flight mass spectrometry with atmospheric pressure chemical ionization. Anal Bioanal Chem. 2014;406(27):6843-6855. DOI: 10.1007/s00216-014-7853-1.
- [13] Fillatre Y, Rondeau D, Daguin A, Jadas-Hecart A, Communal P-Y. Multiresidue determination of 256 pesticides in lavandin essential oil by LC/ESI/sSRM: advantages and drawbacks of a sampling method involving evaporation under nitrogen. Anal Bioanal Chem. 2013;406(5):1541-1550. DOI: 10.1007/s00216-013-7553-2
- [14] Liang HC, Bilon N, Hay MT. Analytical methods for pesticide residues in the water environment. Water Environ Res. 2014;87(10):1923-1937. DOI: 10.2175/106143015X14338845156542.
- [15] Cai J-R, Zhou L-N, Han E. A sensitive amperometric acetylcholine biosensor based on carbon nanosphere and acetylcholinesterase modified electrode for detection of pesticide residues. Anal Sci. 2014;30(6):669-673. DOI: 10.2116/analsci.30.669.
- [16] Li C-P, Fan S, Yin C, Zhang N, Du S, Zhao H. Carboxylic silica nanosheet-platinum nanoparticle modified glass carbon electrodes for pesticide detection. Anal Methods. 2014;6(6):1914-1921. DOI: 10.1039/C3AY42305K.
- [17] Songa EA, Somerset VS, Waryo T, Baker PGL, Iwuoha EI. Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples (Report). Pure Appl Chem. 2009;81(1):123-139. DOI: 10.1351/PAC-CON-08-01-15.
- [18] Barek J, Cabalkova D, Fischer J, Navratil T, Peckova K, Yosypchuk B. Voltammetric determination of the herbicide Bifenox in drinking and river water using a silver solid amalgam electrode. Environ Chem Lett. 2011;9(1):83-86. DOI: 10.1007/s10311-009-0250-x.
- [19] Brycht M, Skrzypek S, Nosal-Wiercilska A, Smarzewska S, Guziejewski D, Ciesielski W, et al. The new application of renewable silver amalgam film electrode for the electrochemical reduction of nitrile, cyazofamid, and its voltammetric determination in the real samples and in a commercial formulation. Electrochim Acta. 2014;134:302-308. DOI: 10.1016/j.electacta.2014.04.143.
- [20] Smarzewska S, Metelka R, Guziejewski D, Skowron M, Skrzypek S, Brycht M, et al. Voltammetric behaviour and quantitative determination of pesticide iminoctadine. Anal Methods. 2014;6(6):1884-1889. DOI: 10.1039/C3AY42038H.
- [21] Skrzypek S, Smarzewska S, Ciesielski W. Determination of Blasticidin S in spiked rice using SW voltammetry with a renewable silver amalgam film electrode. Electroanalysis. 2012;24(5):1153-1159. DOI: 10.1002/elan.201100715.
- [22] Inam R, Cakmak Z. A simple square wave voltammetric method for the determination of Aclonifen herbicide. Anal Methods. 2013;5(13):3314-3320. DOI: 10.1039/C3AY40333E
- [23] Ni Y, Wang L, Kokot S. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics. J Environ Sci Health. Part B. Pesticides Food Contamin Agricult Wastes. 2011;46(4):328-335. DOI: 10.1080/03601234.2011.559888.
- [24] Silva TA, Figueiredo LCS, Vicentini FC, Deroco PB, Rocha-Filho RC, Fatibello-Filho O. Square-wave voltammetric determination of the herbicide bentazon using a cathodically pretreated boron-doped diamond electrode. Chem Sensors. 2014;4:1-6. http://www.cognizure.com/abstract.aspx?p=200638412.
- [25] Yosypchuk B, Barek J. Analytical applications of solid and paste amalgam electrodes. Crit Rev Anal Chem. 2009;39:189-203. DOI: 10.1080/10408340903011838.
- [26] Fischer J, Dejmkova H, Barek J. Electrochemistry of pesticides and its analytical applications. Curr Org Chem. 2011;15:2923-2935. DOI: 10.2174/138527211798357146.
- [27] Gajdar J, Horakova E, Barek J, Fischer J, Vyskočil V. Recent applications of mercury electrodes for monitoring of pesticides: A critical review. Electroanalysis. 2016;28:2659-2671. DOI: 10.1002/elan.201600239.
- [28] Yosypchuk B, Novotný L. Electrodes of nontoxic solid amalgams for electrochemical measurements. Electroanalysis. 2002;14:1733-1738. DOI: 10.1002/elan.200290018.
- [29] Bordin DCM, Alves MNR, Cabrices OG, Campos EGd, Martinis BSD. A rapid assay for the simultaneous determination of nicotine, cocaine and metabolites in meconium using disposable pipette extraction and gas chromatography/mass spectrometry (GC/MS). J Anal Toxicol. 2013;38(1):31-38. DOI: 10.1093/jat/bkt092.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6bc92597-529f-4029-88e5-6fdbc60861dd