Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | Vol. 49, nr 2 | 323--330
Tytuł artykułu

Numerical and experimental true strain assessment on sheet forming using mapped versus free meshing

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The main aim of the present study was to analyze the influence of the algorithmic theories of generation and control of triangular, quadrilateral, hexahedral and tetrahedral meshing, i.e. which are the most common types of meshes used in the software of finite elements for large plastic deformation. The importance of these methods is due to the fact that they are the spine of Finite Element Methods (FEM). Design/methodology/approach: It was numerically evaluated the parameters influencing mapped (structured) and free meshing on sheet forming simulation (stretching). For the tests a stretching tool with geometry proposed by Nakazima was used. The study presents the results in terms of the major true strains (ε1, ε2, ε3) and a comparison with experimental data was carried out (validation). Findings: The analysis showed that Shell-type elements are dependent of the element format choice and the way of application in the geometry. Objects built with Shell type elements, i.e. components that will suffer large plastic deformation are extremely sensitive to the mesh format, refinement and way that it was applied. A relationship was also shown among equivalent meshes for elements in the format Tri and Quad. Research limitations/implications: To describe the complete influence of the type of meshing are beyond the scope of this study as it was used only one commercial software and one method of forming. Practical implications: The correct choice of the meshing parameters can provide more accurate results during the simulations of sheet stretching process. Originality/value: The paper shows the differences and implications of the correct choice of meshing during finite element analysis.
Wydawca

Rocznik
Strony
323--330
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Mechanical Department, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 210, CEP 81531-990, Curitiba - Paraná - Brazil
  • Mechanical Department, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 210, CEP 81531-990, Curitiba - Paraná - Brazil
  • Mechanical Department, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 210, CEP 81531-990, Curitiba - Paraná - Brazil
Bibliografia
  • [1] N. Cappetti, L. Garofalo, A. Naddeo, M. Nastasia, A. Pellegrino, A method for setting variables in Super Plastic Forming process, Journal of Achievements in Materials and Manufacturing Engineering 38/2 (2010) 187-194.
  • [2] A. Śliwa, L.A. Dobrzański, W. Kwaśny, M. Staszuk, Simulation of the microhardness and internal stresses measurement of PVD coatings by use of FEM, Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 684-691.
  • [3] M.J. Jackson, Numerical analysis of small recessed silicon carbide grinding wheels, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 27-37.
  • [4] W. Kapturkiewicz, A.A. Burbelko, E. Fras, M. Górny, D. Gurgul, Computer modelling of ductile iron solidification using FDM and CA methods, Journal of Achievements in Materials and Manufacturing Engineering 43/1 (2010) 310323.
  • [5] I. Zeid, Mastering CAD/CAM, Mac Graw Hill, New York, 2005.
  • [6] S.J. Owen, A survey of unmapped mesh generation technology, Proceedings of the 7th International Meshing Roundtable (1998) 239-267.
  • [7] O.C. Zienkiewics, R.L. Taylor, Finite Element Method, Solid Mechanics 2, Butterworth Heinemann, 2000.
  • [8] G.R. Liu, S.S. Quek, The Finite Element Method, A Practical Course, Butterworth Heinemann, Burlington, 2003.
  • [9] J.C. Cuillihre, An adaptive method for the automatic triangulation of 3D parametric surfaces, Computer-Aided Design 30 (1999) 2 139-149.
  • [10] W. Min, Z. Tangt, Z. Zhang, et al. Automatic mesh generation for multiply connected planar regions based on mesh grading propagation, Computer-Aided Design 28 (1996) 671-681.
  • [11] D.V. Hutton, Fundamentals of Finite Element Analysis, McGrawHill, 2004, 193-196.
  • [12] H.H. Wisselink, Analysis of guillotining and slitting-finite element simulations, Netherlands, 2000.
  • [13] J.-L. Chenot, E. Massoni, Finite element modelling and control of new metal forming processes, International Journal of Machine Tools & Manufacture 46 (2006) 1194-1200.
  • [14] R. Boussetta, T. Coupez, L. Fourment, Adaptive remeshing based on a posteriori error estimation for forging simulation, Computer Methods in Applied Mechanics and Engineering 195 (2006) 6626-6645.
  • [15] H.C. Silva, Numerical analysis of the test of Nakazima via Finite Element Method, Master thesis - PG-MEC, Federal University of Paraná, 2005 (in Portuguese).
  • [16] R.A.F. Chemin, Evaluation of sheet deformations and FLC curves for different geometries of punches, Master thesis -PG-MEC, Federal University of Paraná, 2004 (in Portuguese).
  • [17] W.L. Oberkampf, T.G. Trucano, C. Hirsch, Verification, validation and predictive capability in computational engineering and physics, Applied Mechanics Reviews 57 (2004) 345-384.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6bc46935-be72-423c-b6f1-594b1564a804
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.