Warianty tytułu
Języki publikacji
Abstrakty
The presented paper is mainly aimed at estimating the residual lifetime of metal used for the offshore gas pipeline under a low amplitude cyclic load applying S- and J-methods for pipelaying. Taking into account the preliminary effect of deformation on the welded joint and the base material of the pipe, the tests on fatigue have been carried out and physical and mechanical regularities in fatigue failure in offshore gas pipeline materials have been established. The obtained results show that the plasticity and embrittlement of the pipe wall employing S- and J-methods for pipelaying do not practically affect the residual lifetime of metal under low amplitude cyclic loading, but rather exert a significant influence within a high amplitude range under the preliminary deformation process that activates the accumulation of fatigue defects and strain aging.
Czasopismo
Rocznik
Tom
Strony
524--536
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Department of Chemistry, Ivano-Frankivsk National Technical University of Oil and Gas, Karpats'ka str. 15, 76019 Ivano-Frankivsk, Ukraine
autor
- Department of Industrial Automation, Ternopil Ivan Pul'uj National Technical University, Rus'ka str. 56, 46001 Ternopil, Ukraine, maruschak.tu.edu@gmail.com
autor
- Department of Transport Technological Equipment, Vilnius Gediminas Technical University, Plytines g. 27, LT-10105 Vilnius, Lithuania
autor
- Department of Industrial Automation, Ternopil Ivan Pul'uj National Technical University, Rus'ka str. 56, 46001 Ternopil, Ukraine
autor
- Department of Chemistry, Ivano-Frankivsk National Technical University of Oil and Gas, Karpats'ka str. 15, 76019 Ivano-Frankivsk, Ukraine
autor
- Department of Technologies and Materials, Košice Technical University, Mäsiarska 74, 040 01 Kosice, Slovakia
Bibliografia
- [1] A. Palmer, R. King, Subsea Pipeline Engineering, PennWell Corp., 2008. p. 575.
- [2] The simulation and sensitivity analysis of S-lay installation in deep water, Applied Mechanics and Materials 249–250 (2012) 59–64. http://dx.doi.org/10.4028/www.scientific.net/ AMM.249-250.59.
- [3] Peng Xie, Qianjin Yue, Andrew Palmer, Cyclic plastic deformation of overbend pipe during deepwater S-lay operation, Marine Structures 34 (2013) 74–87. http://dx.doi. org/10.1016/j.marstruc.2013.08.003.
- [4] W. Fricke, H. Paetzold, Full-scale fatigue tests of ship structures to validate the S–N approaches for fatigue strength assessment, Marine Structures 23 (1) (2010) 115– 130. http://dx.doi.org/10.1016/j.marstruc.2010.01.004.
- [5] I. Morin, Razrabotka metodov otsenki napryazhenno- deformirovannogo sostoyaniya morskih gazoprovodov: Author's Abstr. of the Candidate-Degree Thesis (Engineering), Moscow, 2013, . p. 23 s (in Russian).
- [6] P. Maruschak, I. Danyliuk, O. Prentkovskis, R. Bishchak, A. Pylypenko, A. Sorochak, Degradation of the main gas pipeline material and mechanisms of its fracture, Journal of Civil Engineering and Management 20 (6) (2014) 864–872. http://dx. doi.org/10.3846/13923730.2014.971128.
- [7] P. Maruschak, S. Panin, I. Vlasov, O. Prentkovskis, I. Danyliuk, Structural levels of the nucleation and growth of fatigue crack in 17Mn1Si steel pipeline after long-term service, Transport 30 (1) (2015) 15–23. http://dx.doi.org/10.3846/16484142.2014. 1003404.
- [8] I. Okipnyi, P. Maruschak, O. Prentkovskis, Structural- hierarchical mechanism for cracking reactor steel after preliminary thermomechanical loading, Solid State Phenomena 220–221 (2015) 720–724. http://dx.doi.org/10.4028/ www.scientific.net/SSP.220-221.720.
- [9] P. Marushchak, U. Salo, R. Bishchak, L. Poberezhnyi, Study of main gas pipeline steel strain hardening after prolonged operation, Chemical and Petroleum Engineering 50 (1–2) (2014) 58–61.
- [10] K.J. Kirkhope, R. Bell, L. Caron, R.I. Basu, K.-T. Ma, Weld detail fatigue life improvement techniques. Part 1: review, Marine Structures 12 (6) (1999) 447–474. http://dx.doi.org/10.1016/ S0951-8339(99)00013-1.
- [11] T. Antoun Netto, M.I. Lourenço, A. Botto, Fatigue performance of pre-strained pipes with girth weld defects: full-scale experiments and analyses, International Journal of Fatigue 30 (5) (2008). http://dx.doi.org/10.1016/j.ijfatigue.2007.07.002.
- [12] P. Marushchak, I. Konovalenko, Computer evaluation of the depth of thermomechanical fatigue cracks according to their length, Materials Science 48 (1) (2012) 54–64. http://dx.doi.org/ 10.1007/s11003-012-9472-3.
- [13] GOST 25.502-79. Raschyoty i ispytaniya na prochnost' v mashinostroenii. Metody mehanicheskih ispytanij metallov. Metody ispytanij na ustalost' [Strength analysis and testing in machine building. Methods of metals mechanical testing. Methods of fatigue testing], Moscow, 50 s (in Russian).
- [14] R. O'Grady, A. Harte, Localised assessment of pipeline integrity during ultra-deep S-lay installation, Ocean Engineering 68 (2013) 27–37. http://dx.doi.org/10.1016/j. oceaneng.2013.04.004.
- [15] Xiangfeng Zhang, Qianjin Yue, Wenshou Zhang, Peng Xie, Study on the design of a model experiment for deep-sea S-laying, Ocean Engineering 84 (2014) 194–200. http://dx.doi. org/10.1016/j.oceaneng.2014.04.010.
- [16] Feng Yuan, Lizhong Wang, Zhen Guo, Yonggui Xie, Analytical analysis of pipeline–soil interaction during J-lay on a plastic seabed with bearing resistance proportional to depth, Applied Ocean Research 36 (2012) 60–68. http://dx.doi.org/ 10.1016/j.apor.2012.02.004.
- [17] Peng Xie, Yan Zhao, Qianjin Yue, Andrew Palmer, Dynamic loading history and collapse analysis of the pipe during deepwater S-lay operation, Marine Structures 40 (2015) 183– 192. http://dx.doi.org/10.1016/j.marstruc.2014.11.003.
- [18] M.K. Il'nyc'kyj, O.B. Shadrin, Proektuvannja, budivnyctvo ta ekspluatacija mors'kyh truboprovodiv, Ukrai'ns'ka knyga, Kyiv, 1997. p. 174 s (in Ukrainian).
- [19] Yu.A. Goryainov, A.S. Fedorov, G.G. Vasil'ev, Morskie truboprovody, Nedra, Moskva, 2001. p. 131 s (in Russian).
- [20] V. Kravcov, Mehanika gibkih mors'kyh konstrukcij, Naukova dumka, Kyiv, 1999. p. 131 s (in Ukrainian).
- [21] V.I. Pokhmurskii, T.N. Kalichak, Ya.L. Poberezhnyi, Method of investigating the kinetics of fatigue failure of metals in the presence of working media, Soviet Materials Science 9 (5) (1973) 573–576. http://dx.doi.org/10.1007/BF00715534.
- [22] P. Maruschak, L. Poberezhny, T. Pyrig, Fatigue and brittle fracture of carbon steel of gas and oil pipelines, Transport 28 (3) (2013) 270–275. http://dx.doi.org/10.3846/16484142.2013. 829782.
- [23] K. Miková, S. Bagherifard, O. Bokuvka, M. Guagliano, L. Trško, Fatigue behavior of X70 microalloyed steel after severe shot peening, International Journal of Fatigue 55 (2013) 33–42. http://dx.doi.org/10.1016/j.ijfatigue.2013.04.021.
- [24] B. Pinheiro, J. Lesage, I. Pasqualino, N. Benseddiq, E. Bemporad, X-ray diffraction study of microstructural changes during fatigue damage initiation in steel pipes, Materials Science and Engineering A 532 (2012) 158–166. http://dx.doi.org/10.1016/j.msea.2011.10.077.
- [25] M. Chapetti, L. Jaureguizahar, Fatigue behavior prediction of welded joints by using an integrated fracture mechanics approach, International Journal of Fatigue 43 (2012) 43–53. http://dx.doi.org/10.1016/j.ijfatigue.2012.02.004.
- [26] Yong Zhong, Yiyin Shan, Furen Xiao, Ke Yang, Effect of toughness on low cycle fatigue behavior of pipeline steels, Materials Letters 59 (14–15) (2005) 1780–1784. http://dx.doi. org/10.1016/j.matlet.2005.01.066.
- [27] V.S. Pleshanov, V.V. Kibitkin, A.S. Maslovsky, O.N. Lavrov, V. E. Panin, Mesoscale fatigue failure of welded joints of low-alloy steel, Theoretical and Applied Fracture Mechanics 33 (1) (2000) 17–21. http://dx.doi.org/10.1016/S0167-8442(99) 00047-6.
- [28] V. Gliha, P. Maruschak, O. Yasniy, T. Vuherer, Fatigue strength of welds with various defects made by ViFkers pyramide, Journal of the Ternopil State Technical University (2011) 123–131.
- [29] P. Makarov, Localized deformation and fracture of polycrystals at mesolevel, Theoretical and Applied Fracture Mechanics 33 (1) (2000) 23–30. http://dx.doi.org/10.1016/ S0167-8442(99)00048-8.
- [30] T. Vuherer, V. Hlado, V. Hutsaylyuk, P. Maruschak, P. Yasniy, V. Gliha, Crack emanation from defects modeled by extremely small drilled holes in two conditions, in: Proceedings of the XIII International Colloquium ‘‘Mechanical Fatigue of Metals’’, September 25–28, 2006, Ternopil, TSTU, (2006) 251–258.
- [31] T. Vuherer, L. Milović, V. Gliha, Behaviour of small cracks during their propagation from Vickers indentations in coarse-grain steel: an experimental investigation, International Journal of Fatigue 33 (12) (2011) 1505–1513. http://dx.doi.org/10.1016/j.ijfatigue.2011.06.008.
- [32] A.M. Gresnigt, R.J. Van Foeken, Strength and deformation capacity of bends in pipelines, International Journal of Offshore and Polar Engineering 5 (4) (1995) 294–307.
- [33] A. Pirondi, N. Bonora, D. Steglich, W. Brocks, D. Hellmann, Simulation of failure under cyclic plastic loading by damage models, International Journal of Plasticity 22 (11) (2006) 2146–2170.
- [34] T. Antoun Netto, A. Botto, M.I. Lourenço, Fatigue performance of pre-strained pipes with girth weld defects: local deformation mechanisms under bending, International Journal of Fatigue 30 (6) (2008) 1080–1091. http://dx.doi.org/ 10.1016/j.ijfatigue.2007.08.001.
- [35] P. Maruschak, S. Panin, F. Stachowicz, I. Danyliuk, I. Vlasov, R. Bishchak, Structural levels of fatigue failure and damage estimation in 17Mn1Si steel on the basis of multilevel approach of physical mesomechanics, in: Proceedings of the International Conference on Advances in Micromechanics of Materials, July 8–11, 2004, Rzeszow, (2004) 42–43.
- [36] A.A. Shanyavskiy, Mechanisms and modeling of subsurface fatigue cracking in metals, Engineering Fracture Mechanics 110 (2013) 350–363. http://dx.doi.org/10.1016/j.engfracmech. 2013.05.013.
- [37] T. Vuherer, P. Maruschak, I. Samardžić, Behaviour of coarse grain heat affected zone (HAZ) during cycle loading, Metalurgija 51 (3) (2012) 301–304.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6bac1c88-41b5-4933-bda0-fc4f74d3725c