Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 38, no. 3 | 574--585
Tytuł artykułu

Virus–human protein–protein interaction prediction using Bayesian matrix factorization and projection techniques

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pathogens infect host organisms by exploiting host cellular mechanisms and evading host defence mechanisms through molecular pathogen–host interactions (PHIs). Discovering new interactions between pathogen and human proteins is very crucial in understanding the infection mechanisms. By analysing interaction networks, the interactions responsible for infectious diseases can be detected and new drugs disabling these interactions can be delivered. In this paper, we propose a method based on Bayesian matrix factorization for predicting PHIs along with a projection-based technique and combine the results by employing an ensemble method. Furthermore, two features, target similarity and attacker similarity, are utilized for the first time in the literature for PHI prediction. The advantages of the proposed methods are two folds. Firstly, they relieve the need for negative samples which is significant since there is no available dataset providing negative samples for most of the pathogenic systems. Secondly, the experiments demonstrate that the proposed approach outperforms state-of-the-art methods; roughly 20% of top 50 predictions are among recently validated interactions. So, the search space for wet-lab experiments to obtain validated interactions can be considerably narrowed down from a huge number of possible interactions.
Wydawca

Rocznik
Strony
574--585
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Information Technology, Faculty of Information Technology and Computer Engineering, Azarbaijan Shahid Madani University, Kilometere 35, Tabriz/Azarshahr Road, Tabriz, Iran, ac.nourani@azaruniv.ac.ir
autor
  • Department of Computer Science and Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran; School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
  • Department of Computer Engineering, Gebze Technical University, Kocaeli, Turkey
Bibliografia
  • [1] Nourani E, Khunjush F, Durmuş S. Computational approaches for prediction of pathogen–host protein–protein interactions. Front Microbiol 2015;6:94. http://dx.doi.org/10.3389/fmicb.2015.00094.
  • [2] Aloy P, Russell RB. InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 2003;19:161–2.
  • [3] Peyraud R, Dubiella U, Barbacci A, Genin S, Raffaele S, Roby D. Advances on plant–pathogen interactions from molecular toward systems biology perspectives. Plant J 2017;90:720–37. http://dx.doi.org/10.1111/tpj.13429.
  • [4] Dyer M, Murali TM, Sobral BW. Supervised learning and prediction of physical interactions between human and HIV proteins. Infect Genet Evol 2011;11:917–23. http://dx.doi.org/10.1016/j.meegid.2011.02.022.
  • [5] Cui G, Fang C, Han K. Prediction of protein–protein interactions between viruses and human by an SVM model BMC Bioinformatics 2012;13(Suppl. 7):S5. http://dx.doi.org/10.1186/1471-2105-13-S7-S5.
  • [6] Doolittle JM, Gomez SM. Mapping protein interactions between Dengue virus and its human and insect hosts. PLoS Negl Trop Dis 2011;5:e954. http://dx.doi.org/10.1371/journal.pntd.0000954.
  • [7] de Chassey B, Meyniel-Schicklin L, Aublin-Gex A, Navratil V, Chantier T, André P, et al. Structure homology and interaction redundancy for discovering virus–host protein interactions. EMBO Rep 2013;14:938–44. http://dx.doi.org/10.1038/embor.2013.130.
  • [8] Mariano R, Wuchty S. Structure-based prediction of host–pathogen protein interactions. Curr Opin Struct Biol 2017;44:119–24. http://dx.doi.org/10.1016/j.sbi.2017.02.007.
  • [9] Zhang A, He L, Wang Y. Prediction of GCRV virus–host protein interactome based on structural motif-domain interactions. BMC Bioinformatics 2017;18:145. http://dx.doi.org/10.1186/s12859-017-1500-8.
  • [10] Mahajan G, Mande SC. Using structural knowledge in the protein data bank to inform the search for potential host–microbe protein interactions in sequence space: application to Mycobacterium tuberculosis. BMC Bioinformatics 2017;18:201. http://dx.doi.org/10.1186/s12859-017-1550-y.
  • [11] Zhao G, Qian X, Xie X. User-service rating prediction by exploring social users' rating behaviors. IEEE Trans Multimed 2016;18:496–506. http://dx.doi.org/10.1109/TMM.2016.2515362.
  • [12] Gönen M. Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization. Bioinformatics 2012;28:2304–10. http://dx.doi.org/10.1093/bioinformatics/bts360.
  • [13] Gonen M, Kaski S. Kernelized bayesian matrix factorization. IEEE Trans Pattern Anal Mach Intell 2014;8828. http://dx.doi.org/10.1109/TPAMI.2014.2313125.
  • [14] Gonen M. Embedding heterogeneous data by preserving multiple kernels. ECAI 2014 21st Eur Conf Artif Intell. 2014. p. 381. http://dx.doi.org/10.3233/978-1-61499-419-0-381.
  • [15] Mei S, Zhu H. Computational reconstruction of proteome-wide protein interaction networks between HTLV retroviruses and Homo sapiens. BMC Bioinformatics 2014;15:245. http://dx.doi.org/10.1186/1471-2105-15-245.
  • [16] Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine learning methods. PLOS ONE 2014;9:e112034. http://dx.doi.org/10.1371/journal.pone.0112034.
  • [17] Nourani E, Khunjush F, Durmuş S. Computational prediction of virus–human protein–protein interactions using embedding kernelized heterogeneous data. Mol Biosyst 2016;12:1976–86. http://dx.doi.org/10.1039/C6MB00065G.
  • [18] Ho TK. The random subspace method for constructing decision forest. IEEE Trans Pattern Anal Mach Intell 1998;20:832–44. http://dx.doi.org/10.1109/34.709601.
  • [19] Wang JZ, Du Z, Payattakool R, Yu PS, Chen C-F. A new method to measure the semantic similarity of GO terms. Bioinformatics 2007;23:1274–81. http://dx.doi.org/10.1093/bioinformatics/btm087.
  • [20] Yu J, Guo M, Needham CJ, Huang Y, Cai L, Westhead DR. Simple sequence-based kernels do not predict protein–protein interactions. Bioinformatics 2010;26:2610–4. http://dx.doi.org/10.1093/bioinformatics/btq483.
  • [21] Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins bydeep learning. Nat Biotechnol 2015;33:831–8. http://dx.doi.org/10.1038/nbt.3300.
  • [22] Leslie C, Eskin E, Noble WS. The spectrum kernel: a string kernel for SVM protein classification. Biocomput 2002 – Proc Pacific Symp, vol. 575. 2001. pp. 564–75. http://dx.doi.org/10.1142/9789812799623_0053.
  • [23] Zhang P, Wang F, Hu J. Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity. Am Med Informatics Assoc Annu Symp; 2014.
  • [24] Durmuş Tekir S, Çakır T, Ardiç E, Sayılırbaş AS, Konuk G, Konuk M, et al. PHISTO: pathogen–host interaction search tool. Bioinformatics 2013;29:1357–8. http://dx.doi.org/10.1093/bioinformatics/btt137.
  • [25] Schleker S, Trilling M. Data-warehousing of protein–protein interactions indicates that pathogens preferentially target hub and bottleneck proteins. Front Microbiol 2013;4:51. http://dx.doi.org/10.3389/fmicb.2013.00051.
  • [26] Dyer MD, Murali TM, Sobral BW. The landscape of human proteins interacting with viruses and other pathogens. PloS Pathog 2008;4:e32. http://dx.doi.org/10.1371/journal.ppat.0040032.
  • [27] Zheng L-L, Li C, Ping J, Zhou Y, Li Y, Hao P. The domain landscape of virus–host interactomes. Biomed Res Int 2014;2014:867235. http://dx.doi.org/10.1155/2014/867235.
  • [28] Durmuş Tekir S, Cakir T, Ulgen KÖ. Infection strategies of bacterial and viral pathogens through pathogen–human protein–protein interactions. Front Microbiol 2012;3:46. http://dx.doi.org/10.3389/fmicb.2012.00046.
  • [29] Jaakkola T, Diekhans M. Using the Fisher kernel method to detect remote protein homologies. Seventh Int Conf Intell Syst Mol Biol. AAAI Press; 1999. p. 149–58.
  • [30] Yu G, Li F, Qin Y, Bo X, Wu Y, Wang S. GOSemSim: an R package for measuring semantic similarity among GO terms and gene products. Bioinformatics 2010;26:976–8. http://dx.doi.org/10.1093/bioinformatics/btq064.
  • [31] Chatraryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, et al. VirusMINT: a viral protein interaction database. Nucleic Acids Res 2009;37:D669–73. http://dx.doi.org/10.1093/nar/gkn739.
  • [32] Simonis N, Rual J-F, Lemmens I, Boxus M, Hirozane-Kishikawa T, Gatot J-S, et al. Host–pathogen interactome mapping for HTLV-1 and -2 retroviruses. Retrovirology 2012;9:26. http://dx.doi.org/10.1186/1742-4690-9-26.
  • [33] Cobanoglu MC, Liu C, Hu F, Oltvai N, Bahar I. Predicting drug–target interactions using probabilistic matrix factorization. J Chem Inf Model 2013;53:3399–409.
  • [34] Li BYS, Yeung LF, Yang G. Pathogen host interaction prediction via matrix factorization. 2014 IEEE Int Conf Bioinforma Biomed. IEEE; 2014. p. 357–62. http://dx.doi.org/10.1109/BIBM.2014.6999185.
  • [35] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44–57. http://dx.doi.org/10.1038/nprot.2008.211.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6b87f965-2cd1-40f8-937c-84322577b738
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.