Warianty tytułu
Języki publikacji
Abstrakty
The paper focuses on spatial modelling of composites with discontinuous reinforcement. The algorithm for creating a representative volume element (RVE) must consider random distribution and size of reinforcing particles (RP), prevention of RP interpenetration, and maintaining the desired volume fraction of the reinforcing phase (Vp) in the composite microstructure. Assuming fixed RVE dimensions and randomly determined RP size, the actual Vp value needs to be continuously determined. If the assumed (desired) Vp is lower than the current value, additional reinforcement is added to the RVE. As the RP location is random, some particles may extend beyond the RVE limits, affecting Vp calculation. The research aims to determine the RP volume within the RVE boundaries when RP extends outside. The RVE was discretized with N points, and the number of Ni points within the area occupied by RP was determined. The sought value was calculated using the ratio Ni /N = Vp /VRVE, where VRVE, is the volume of the RVE. Two discretisation methods, systematised (RI) and random (Monte Carlo (MC)), were employed. The study investigated the effects of discretisation type and number N points on calculation accuracy and microstructure generation time for particle-reinforced composites in sphere, cylinder, and ellipsoid shapes. Systematised discretisation yielded higher accuracy/stability, with number N dependent on RP dimensions. The MC method reduced generation time but introduced instability and significant errors.
Czasopismo
Rocznik
Tom
Strony
151--160
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland, g.mieczkowski@pb.edu.pl
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland, d.szpica@pb.edu.pl
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland, a.borawski@pb.edu.pl
Bibliografia
- 1. Robinson M. J., Kosmatka J. B. Development of a Short-Span Fiber-Reinforced Composite Bridge for Emergency Response and Military Applications. Journal of Bridge Engineering [Internet]. 2008;13(4):388–97. Available from: https://ascelibrary.org/doi/abs/10.1061/(ASCE)1084-0702(2008)13:4(388)
- 2. Macke A, Schultz B, Rohatgi PK. Metal Matrix Composites Offer the Automotive Industry an Opportunity to Reduce Vehicle Weight, Im-prove Performance. Advanced Materials and Processes. 2012;170:19–23.
- 3. Mieczkowski G, Szpica D, Borawski A, Diliunas S, Pilkaite T, Leisis V. Application of Smart Materials in the Actuation System of a Gas Injector. Materials. Basel Switzerland [Internet]. 2021;14(22). Availa-ble from: https://pubmed.ncbi.nlm.nih.gov/34832384/
- 4. Borawski A. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars. Materials 2021;14(4):884 [Internet]. Available from: https://www.mdpi.com/1996-1944/14/4/884/htm
- 5. Beck AJ, Hodzic A, Soutis C, Wilson CW. Influence of Implementa-tion of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect. IOP Conference Se-ries: Materials Science and Engineering [Internet]. 2011;26:12015. Available from: https://doi.org/10.1088%2F1757-899x%2F26%2F1%2F012015
- 6. Richerson DW. Modern Ceramic Engineering: Properties, Pro-cessing, and Use in Design, Third Edition. CRC Press. 2005.
- 7. Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites — a review. Journal of Materials Science [Inter-net]. 1991;26(5):1137–56. Available from: https://link.springer.com/article/10.1007/BF00544448
- 8. Zhao X, Wang J, Chen Q, Jiang H, Chen C, Tu W. Microstructure design and optimization of multilayered piezoelectric composites with wavy architectures. [Internet]. 2023. Available from: https://www. tandfonline.com/doi/abs/10.1080/15376494.2023.2172234
- 9. Mieczkowski G. Static Electromechanical Characteristics of Piezoe-lectric Converters with various Thickness and Length of Piezoelectric Layers. Acta Mechanica et Automatica. 2019;13(1):30–6.
- 10. Borawski A, Szpica D, Mieczkowski G, Borawska E, Awad MM, Shalaby RM, et al. Theoretical Analysis of the Motorcycle Front Brake Heating Process during High Initial Speed Emergency Braking. Journal of Applied and Computational Mechanics. 2020;6(Special Is-sue):1431–7.
- 11. Wang C, Ping X, Zhang Y, Xiao Z, Xiao Y. On the three-dimensional singular stress field near the corner front of revolution-shaped inclu-sions. Acta Mechanica [Internet]. 2021;232(12):4867–95. Available from: https://link.springer.com/article/10.1007/s00707-021-03078-2
- 12. Ran Z, Yan Y, Li J, Qi Z, Yang L. Determination of thermal expansion coefficients for unidirectional fiber-reinforced composites. Chinese Journal of Aeronautics [Internet]. 2014;27(5):1180–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1000936114000429
- 13. Santos JA, Sanches AO, Akasaki JL, Tashima MM, Longo E, Mal-monge JA. Influence of PZT insertion on Portland cement curing pro-cess and piezoelectric properties of 0–3 cement-based composites by impedance spectroscopy. Construction and Building Materials. 2020;238:117675.
- 14. Oh KH, Han KS. Short-fiber/particle hybrid reinforcement: Effects on fracture toughness and fatigue crack growth of metal matrix compo-sites. Composites Science and Technology [Internet]. 2007;67(7):1719–26. Available from: http://www.sciencedirect.com/science/article/pii/S026635380600251X
- 15. Sijo MT, Jayadevan KR. Analysis of Stir Cast Aluminium Silicon Carbide Metal Matrix Composite: A Comprehensive Review. Proce-dia Technology [Internet]. 2016;24:379–85. Available from: http://www.sciencedirect.com/science/article/pii/S2212017316301360
- 16. Caban J, Droździel P, Ignaciuk P, Kordos P. The impact of changing the fuel dose on chosen parameters of the diesel engine start-up process. Transport Problems. 2019;14(4):51–62.
- 17. Szpica D. Fuel dosage irregularity of LPG pulse vapor injectors at different stages of wear. Mechanika. 2016;22(1):44–50.
- 18. Duschlbauer D, Böhm HJ, Pettermann HE. Computational Simulation of Composites Reinforced by Planar Random Fibers: Homogeniza-tion and Localization by Unit Cell and Mean Field Approaches. [Inter-net]. 2006;40(24):2217–34. Available from: https://journals.sagepub.com/doi/10.1177/0021998306062317
- 19. Tornabene F, Luo Y. Microstructure-Free Finite Element Modeling for Elasticity Characterization and Design of Fine-Particulate Compo-sites. Journal of Composites Science [Internet]. 2022;6(2):35. Availa-ble from: https://www.mdpi.com/2504-477X/6/2/35/htm
- 20. Tu ST, Cai WZ, Yin Y, Ling X. Numerical Simulation of Saturation Behavior of Physical Properties in Composites with Randomly Dis-tributed Second-phase. [Internet]. 2005;39(7):617–31. Available from: https://journals.sagepub.com/doi/10.1177/0021998305047263
- 21. Warguła Ł, Wojtkowiak D, Kukla M, Talaśka K. Symmetric Nature of Stress Distribution in the Elastic-Plastic Range of Pinus L. Pine Wood Samples Determined Experimentally and Using the Finite El-ement Method (FEM). Symmetry 2021;13(1):39 [Internet]. Available from: https://www.mdpi.com/2073-8994/13/1/39/htm
- 22. Yao Z, Kong F, Wang H, Wang P. 2D Simulation of composite mate-rials using BEM. Engineering Analysis with Boundary Elements. 2004;28(8):927–35.
- 23. Chen X, Liu Y. Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element meth-od. Computational Materials Science. 2001;21(1):86–94.
- 24. Drugan WJ, Willis JR, Drugan WJ, Willis JR. A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites. JMPSo [Internet]. 1996;44(4):497–524. Available from: https://ui.adsabs.harvard.edu/abs/1996JMPSo..44..497D/abstract
- 25. Kanit T, Forest S, Galliet I, Mounoury V, Jeulin D. Determination of the size of the representative volume element for random compo-sites: statistical and numerical approach. International Journal of Sol-ids and Structures. 2003;40(13–14):3647–79.
- 26. Widom B. Random Sequential Addition of Hard Spheres to a Vol-ume. The Journal of Chemical Physics [Internet]. 1966;44(10):3888–94. Available from: /aip/jcp/article/44/10/3888/81726/Random-Sequential-Addition-of-Hard-Spheres-to-a
- 27. Böhm HJ, Eckschlager A, Han W. Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous rein-forcements. Computational Materials Science. 2002;25(1–2):42–53.
- 28. Kari S, Berger H, Gabbert U. Numerical evaluation of effective mate-rial properties of randomly distributed short cylindrical fibre compo-sites. Computational Materials Science. 2007;39(1):198–204.
- 29. Lee WJ, Son JH, Park IM, Oak JJ, Kimura H, Park YH. Analysis of 3D random AI18B4O33 whisker reinforced Mg composite using FEM and random sequential adsorption. Materials Transactions. 2010;51(6):1089–93.
- 30. Bailakanavar M, Liu Y, Fish J, Zheng Y. Automated modeling of random inclusion composites. Engineering with Computers. 2012;30(4):609–25.
- 31. Zhou J, Qi L, Gokhale AM. Generation of Three-Dimensional Micro-structure Model for Discontinuously Reinforced Composite by Modi-fied Random Sequential Absorption Method. Journal of Engineering Materials and Technology, Transactions of the ASME [Internet]. 2016;138(2). Available from: https://asmedigitalcollection.asme.org/materialstechnology/article/138/2/021001/384156/Generation-of-Three-Dimensional-Microstructure
- 32. Jin BC, Pelegri AA. Three-dimensional numerical simulation of random fiber composites with high aspect ratio and high volume frac-tion. Journal of Engineering Materials and Technology [Internet]. 2011;133(4). Available from: https://asmedigitalcollection.asme.org/materialstechnology/article/133/4/041014/469603/Three-Dimensional-Numerical-Simulation-of-Random
- 33. Qing H. Automatic generation of 2D micromechanical finite element model of silicon–carbide/aluminum metal matrix composites: Effects of the boundary conditions. Materials & Design. 2013;44:446–53.
- 34. Eberly D. Robust Computation of Distance Between Line Segments. Geometric Tools [Internet]. 2018;1–14. Available from: https://www.geometrictools.com/
- 35. Mieczkowski G. Determination of effective mechanical properties of particle - Reinforced composite material with use of numerical ap-proach. Engineering for Rural Development. 2020;19:571–7.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6b6fbbb7-13cd-4475-97e2-e65c0371f887