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Abstract: The paper focuses on spatial modelling of composites with discontinuous reinforcement. The algorithm for creating  
a representative volume element (RVE) must consider random distribution and size of reinforcing particles (RP), prevention of RP  
interpenetration, and maintaining the desired volume fraction of the reinforcing phase (Vp) in the composite microstructure. Assuming fixed 
RVE dimensions and randomly determined RP size, the actual Vp value needs to be continuously determined. If the assumed (desired) Vp 
is lower than the current value, additional reinforcement is added to the RVE. As the RP location is random, some particles may extend 
beyond the RVE limits, affecting Vp calculation. The research aims to determine the RP volume within the RVE boundaries when RP  
extends outside. The RVE was discretized with N points, and the number of Ni points within the area occupied by RP was determined.  
The sought value was calculated using the ratio Ni /N = Vp /VRVE, where VRVE, is the volume of the RVE. Two discretisation methods, 
systematised (RI) and random (Monte Carlo (MC)), were employed. The study investigated the effects of discretisation type and number N 
points on calculation accuracy and microstructure generation time for particle-reinforced composites in sphere, cylinder, and ellipsoid 
shapes. Systematised discretisation yielded higher accuracy/stability, with number N dependent on RP dimensions. The MC method  
reduced generation time but introduced instability and significant errors. 

Key words: particle-reinforced composites, spatial modelling, representative volume element (RVE), control of volume fraction, numerical 
integration  

1. INTRODUCTION 

Today, a steady increase in the use of composites can be ob-
served in various sectors of the economy, such as the defence [1], 
automotive [2–4] and aerospace [5] industries. Composite materi-
als typically have better strength and performance properties 
compared to homogeneous materials such as ceramics, metals 
and plastics. This is due to the fact that beneficial properties of 
both the matrix (e.g. ductility, impact strength) and reinforcements 
(e.g. high strength, high elastic modulus, wear resistance) are 
combined in composites [6]. By appropriate selection of the com-
posite components, their proportions and the distribution and 
geometry of the reinforcement fractions, a material with the de-
sired mechanical, physical and performance properties can be 
produced [7–10]. Composite design is a complex process that 
requires the simultaneous use of experimental and numerical 
studies [11].  

Experimental testing plays a key role, enabling direct investi-
gation of the physical [12,13] and mechanical [14,15] properties of 
composites. A variety of experiments, such as strength tests, 
fatigue tests, microstructure analysis or thermal and electrical 
measurements, are carried out and provide important data for the 
evaluation and validation of numerical models [16,17].  

Numerical tests, such as the finite element method (FEM) 
[18–21] or the boundary element method (BEM) [22,23], allow the 
virtual simulation of the behaviour of composites. Numerical mod-

els take into account material parameters, geometry and loading 
conditions to predict and analyse the response of the composite 
under different operating conditions. They make it possible to 
optimize the design of the composite, reduce the cost and time 
associated with experimental testing, and increase the efficiency 
of the design process. 

One of the key steps in FEM/MEB numerical studies is the 
preparation of a spatial geometrical model of the composite - a 
composite fragment that is small enough to preserve the charac-
teristic features and properties of the material, while being large 
enough for numerical analyses and simulations to be performed 
on it. Furthermore, this fragment should contain the different 
components of the composite in the right proportions and take into 
account their distribution and geometry. Such a composite com-
ponent is called a representative volume element (RVE) [24,25]. It 
can be assumed that the RVE is a representation of the micro-
structure of the composite, and by analysing the RVE, the behav-
iour and macroscopic properties of the whole composite can be 
predicted. 

The algorithm for generating the RVE, which for composites 
with discontinuous reinforcement usually follows the random 
sequential adsorption (RSA) scheme [26–28], must take into 
account a number of key aspects. Among these aspects are the 
random distribution and size of reinforcing particles (RPs), the 
elimination of the possibility of RPs interpenetrating each other, 
and ensuring the desired volume fraction of the reinforcing phase 
(Vp) in the composite microstructure. In the context of this latter 

mailto:a.borawski@pb.edu.pl
https://orcid.org/0000-0002-8090-1671
https://orcid.org/0000-0002-7813-8291
https://orcid.org/0000-0001-5817-655X


Grzegorz Mieczkowski, Dariusz Szpica, Andrzej Borawski                                                                                                                                             DOI 10.2478/ama-2024-0068 
Application of Numerical Integration in Analysing the Volume of Reinforcement Particles in Algorithms for Generating Representative Volume Elements (RVEs) 

152 

aspect, assuming constant RVE dimensions and randomly deter-
mined RP sizes, it is necessary to continuously determine the 
current Vp value. If the assumed Vp value is less than the current 
one, another reinforcement particle is added to the RVE. Howev-
er, it should be noted that the location of the RP is also randomly 
determined, which means that a certain part of the newly added 
reinforcement particles may protrude outside the boundaries of 
the RVE. In this case, only the part of the particle that is within the 
RVE area should be taken into account when calculating the 
current Vp value. If the reinforcement particle has a regular shape, 
such as a sphere, cylinder, ellipsoid or cuboid, and its position is 
such that the axis of symmetry is perpendicular to any of the 
boundary walls of the RVE, or in the case of a sphere it protrudes 
only beyond one wall of the representative element, appropriate 
mathematical formulas can be used to calculate the volume of the 
particle contained in the RVE. However, if the reinforcement 
particle has a more complex shape or its position is such that it is 
not possible to determine unambiguously which part of the particle 
is inside the RVE, other techniques may be necessary.  

While the first two aspects of the RVE formation algorithm 
(elimination of reciprocal interpenetration of particles and their 
random distribution) are well described in the literature reports 
[29–32], the methodology for controlling the assumed Vp appears 
to be insufficiently studied. An interesting proposal, to solve this 
problem, for composites with a sphere-shaped RP, has been 
proposed in papers [28,33] - when the sphere is partially placed 
outside the RVE, an additional reinforcement particle is created, 
crossing the opposite wall of the RVE in such a way that the part 
of the additional particle remaining in the RVE is identical to that 
projecting outside the RVE (for the original sphere). Another 
method to find the volume of the reinforcement particle that re-
mains within the RVE is numerical integration. The purpose of this 
paper is to define the various integration procedures and to inves-
tigate the effect of the adopted RVE discretisation model on the 
accuracy of the calculations. Chapter 2 describes the procedures 
used along with the discretisation models used. Chapter 3, on the 
other hand, presents the results of a study on the influence of the 
discretisation method and the integration parameters used, on the 
accuracy of the results obtained. 

2. APPROACH FOR DETERMINING THE DESIRED VOLUME 
FRACTION OF REINFORCEMENT PHASE IN RVE 

2.1. Main principles and block diagram of the RVE 
generation algorithm for hybrid composites 

The figure below shows an example of a representative vol-
ume element of a hybrid composite (Fig.1a), in which the individu-
al reinforcement particles have the shape of a cylindrical sphere 
and an ellipsoid. The RVE has the shape of a cube with side au. 
The magnitude of the RVE (side length au.) is determined by the 
characteristic dimensions of the RPs and their volume fractions 
[24,25]. The distribution of the reinforcing particles is random, 
meaning that the coordinates of the point Pi(xi,yi,zi) (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈
[0, 𝑎𝑢]) are determined randomly (Fig.1b). For cylindrical or 
ellipsoidal reinforcement particles, the two Euler angles are also 
determined in the same way: θi ψi (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ [0, 𝑎𝑢]).   

Additionally, it is important for the solid objects representing 
the reinforcement material not to intersect. Therefore, during the 
generation of subsequent reinforcement elements, the distance 

between the axis of the newly formed solid object and the axes of 
the already existing ones is calculated. The concept of "axis of the 
solid object" should be understood as follows: 

− for a sphere, the axis of the solid object is a line segment of 
length di, with its centre coinciding with the centre of the 
sphere; 

− for a cylinder, the axis of the solid object is a line segment with 
its ends located at the centres of the bottom and top circular 
bases; 

− for an ellipsoid, the axis of the solid object is a line segment of 
length li, with its centre coinciding with the centre of the ellip-
soid. 

a) 

 
b) 

 
Fig. 1.   Representative volume element (a) and single reinforcements in  

3D space (b) 

This distance must not be less than 1.05 dmax [26], where 
dmax is the maximum transverse dimension (di, bi,  Fig. 1b) of the 
reinforcement element. The calculation of the distance between 
RP axes can be carried out as presented in the papers [30,34].  

For composites with single reinforcement, algorithms for creat-
ing RVEs are discussed in, for example, papers [29,35]. Figure 2 
shows a block diagram of the algorithm for creating the RVE of a 
hybrid composite with the previously described features.  

In Figure 2, the operating block, responsible for determining 
the RP volume remaining within the limits of the RVE when the 
reinforcement particle extends beyond the representative element, 
is shown in grey.  
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Fig. 2. Block diagram of the algorithm for generating RVE of hybrid composites 

The development of operating procedures for this block is the 
main topic addressed in this paper. The detailed development and 
description of the processes/procedures involved in its operation 
are described below. 

2.2. Numerical integration methods for estimating the 
volume fraction of the reinforcement phase in RVE: 
Integration on a regular grid and Monte Carlo method 

Numerical integration is a widely used method in the field of 
scientific materials research and engineering. It is an efficient 
method for the estimation of various parameters, such as volume, 
surface area or inertia, which are important for the characterisa-
tion and analysis of different structures. In the context of compo-
site materials analysis, an important aspect is the estimation of 
the volume fraction of the reinforcement phase in a representative 
volume element. For this purpose, various numerical integration 
methods are used to calculate the volume of reinforcement parti-
cles within the RVE limits. In this chapter, two popular methods of 
numerical integration are presented, namely the Monte Carlo 
(MC) method and integration on a regular/systematised grid (RI). 
Both of these methods are important in the process of generating 
the RVE when the reinforcing particles, due to a random distribu-
tion, project outside the boundaries of the representative element. 
With these methods, it is possible to estimate the volume of the 
portion of the newly generated reinforcement particle that is within 
the boundaries of the RVE. In general, the procedures for deter-
mining the volume of the part of the reinforcement particle remain-

ing in the RVE (nVp), by means of the two numerical integration 
methods used, can be divided into four stages: initialisation, dis-
cretisation (point or grid generation), point evaluation and calcula-
tion of the nVp volume. A detailed description of each stage is 
provided below. 

2.2.1. Stages in numerical integration 

2.2.1.1. Initialisation 

At the beginning of the numerical integration process, it is 
necessary to establish the parameters needed for the calculation, 
such as the number of points (MC) or the size of the subdivision 
grid (RI). Using a larger number of points and a smaller grid size 
results in increased estimation accuracy while increasing the 
computational load (increased computation time, increased hard-
ware requirements). In practice, the optimal values for the number 
of points and grid size will depend on the specific research prob-
lem, e.g. the shape and dimensions of the RP. There is no single 
universal value that is suitable for all cases. It is therefore neces-
sary to experimentally adjust and test different values to find the 
optimal compromise between estimation accuracy, computational 
load and execution time. 

The Monte Carlo method is based on generating random 
points inside the study area to estimate various parameters. With 
this method, it is important to choose the number of points appro-
priately and to maintain randomness in the generation process. 

The number of points is important for the accuracy of the es-
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timation. The higher the number of points, the more accurate the 
results obtained. However, it is important to remember that a 
larger number of points requires more computational time. There-
fore, it is important to find an optimal compromise in order to 
obtain satisfactory estimation accuracy while taking into account 
the available computational resources. In the paper presented 
here, the number of points (MC method) and the grid interval (RI 
method) depended on the overall dimensions of the RVE and RP 
and were calculated from equations (1) and (2), respectively. 

𝑁𝑀𝐶 = 5 ∙ 104 ∙ 𝑛 ∙
𝑚𝑖𝑛(𝑑𝑖,𝑏𝑖,𝑙𝑖)

𝑎𝑢
, 𝑛 = 1,2,3…                         (1) 

𝛥 = (2.5  ∙ 𝑛)−1 𝑚𝑖𝑛(𝑑𝑖,𝑏𝑖,𝑙𝑖)
2

 𝑎𝑢
, 𝑛 = 1,2,3…                         (2) 

The formulas (1) and (2) have been adopted based on con-
ducted research in such a way that for n=1, errors do not exceed 
10%. 

Knowing the overall dimension of the RVE and the grid inter-
val, the number of grid points can be determined: 

𝑁𝑅𝐼 = (
𝑎𝑢

𝛥 
+ 1)3.                                          (3) 

2.2.1.2. Discretisation 

With the Monte Carlo method, points are generated within the 
study area to represent a sample from space. In this method, it is 
important to preserve randomness in the process of generating 
these points. For this purpose, a pseudorandom number genera-
tor, available in Java, was used, with which values in the interval 
[0,1) were generated and multiplied by au to obtain random x, y 
and z coordinates. To exclude duplicates, newly generated points 
were compared with existing points. If a duplicate point was found, 
the coordinates of the additional point were drawn, as described 
above.  

In the method of integration on a regular grid, the study area is 
divided into a regular grid of points. When subdividing, the princi-
ple applied was to keep the distribution of points homogeneous - 
the distance between neighbouring points was identical. 

2.2.1.3. Point evaluation 

Once each point has been generated, an evaluation is carried 
out to determine whether it is within the study area. An example of 
the RVE discretisation for the RI and MC methods is shown in 
Figure 3a and 3b respectively. 

It was assumed that a point Mn is considered to be inside the 
reinforcement particle if the following conditions are met: 
sphere-shaped RP: 

|𝑃𝑖𝑀𝑛
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| ≤ 𝑑𝑖 2⁄ ,                                          (4) 

cylinder-shaped RP: 

{
𝑥′

𝑀
2

+ 𝑦′
𝑀

2
≤ (

𝑑𝑖

2
)2

0 ≤ 𝑧′
𝑀
  

≤ 𝑙𝑖
,                          (5) 

ellipsoid-shaped RP: 

𝑥′
𝑀
2

(𝑑𝑖 2⁄ )2
+

𝑦′
𝑀
2

(𝑏𝑖 2⁄ )2
+

𝑧′
𝑀
2

(𝑙𝑖 2⁄ )2
≤ 1,                         (6) 

where: di, bi, li- dimensions of the particles of the reinforcement 

fraction (Fig. 1b), 𝑥′
𝑀
  
, 𝑦′

𝑀

  
, 𝑧′

𝑀
  

-coordinates of the sampling 

points in the local reference system, the origin of which is located 
at point Pi (Fig. 3). 
The transformation of the coordinates of the Mn points from the 
global system (O, x, y, z) to the local system (𝑃𝑖 , 𝑥

′, 𝑦′, 𝑧′) was 
performed based on the following formulae: 

[

𝑥′
𝑀

𝑦′
𝑀

𝑧′
𝑀

] = 𝐴1
3𝑥3 × 𝐴2

3𝑥3 × [

𝑥𝑀 − 𝑥𝑃

𝑦𝑀 − 𝑦𝑃

𝑧𝑀 − 𝑧𝑃

],          (7) 

where: xP, yP, zP - coordinates of point Pi (base point RP, Fig. 1b) 
in the global reference system, 𝐴1

3𝑥3,  𝐴2
3𝑥3 -matrices of rotation by 

given Euler angles (Fig. 1b).  
The matrices are defined by the following formulas: 

𝐴1
3𝑥3 = [

1
0
0

 0
    cos(𝜓)

   sin(𝜓)

     0
   − sin(𝜓)

       cos(𝜓)
],                         (8) 

𝐴2
3𝑥3 = [

cos(𝛩)  
0

− sin(𝛩)   

0
1
0

     sin(𝛩
 0

     cos(𝛩)
].                         (9) 

a) 

 
b) 

 
Fig. 3.   Sampling in the regular grid integration method (a) and the 

Monte-Carlo method (b), •-points outside the area of the 
reinforcement particle, °-points lying inside the reinforcement 
particle. 
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The number Ni of points located in the area of the reinforce-
ment particle is determined by summing the points satisfying the 
conditions described by formulae (4)÷(6). 

2.2.1.4. Calculation of the nVp volume 

On the basis of the number of Ni points accepted as being in-
side the study area and the corresponding calculations, it is pos-
sible to calculate the estimated volume of the reinforcement phase 
in a representative volume element (shaded area in Figure 3). 

In the RI method, the process involves adding up the volume 
of all accepted points. A key assumption of this method is that the 
points are evenly distributed across the study area (Figure 3a). 
Therefore, the volume of the study area is assumed to be evenly 
distributed over all grid points. Thus, the volume attributed to one 
point can be calculated by dividing the total volume of the RVE 
(au

3) by the number of points in the grid (3). In practice, if the grid 
is dense enough, an accurate approximation of the actual volume 
can be obtained with this approach. However, for sparser grids, 
the approximation may be less precise and the result may have a 
significant error.  

For the Monte Carlo method, the volume can be calculated 
from the ratio of the number of points inside the reinforcement 
area to the total number of points generated and the volume of the 
study area (1). In other words, the ratio of the number of points 
accepted as being within the reinforcement area to the total num-
ber of points generated in the study area is calculated. This ratio 
is then multiplied by the volume of the study area (au

3). To in-
crease the accuracy of the results of this method, it is advisable to 
carry out multiple simulations for the same RVE case. This pro-
cess involves repeating the point generation and volume estima-
tion and then averaging the results. The repetition of simulations 
minimises the influence of random factors and results in more 
precise results. 

The volume of the solid remaining in the RVE was therefore 
determined using the following formula: 

𝑛𝑉𝑝 =
𝑁𝑖

𝑁
𝑎𝑢

3 ,                         (10) 

where: nVp - the volume of the solid remaining in the RVE, N - the 
total number of points used in the sampling (N= NMC  or N= NMC  
calculated for the MC and RI methods from equations (1) and (3) 
respectively), Ni - the number of points lying inside the reinforce-
ment particle. 

3. RESULTS AND DISCUSSION 

This section of the paper presents the results of the proposed 
analyses on the use of integration methods (MC and RI) to deter-
mine the volume of the reinforcement phase in the RVE. The 
results obtained are discussed along with their interpretation and 
analysis. When modelling real composites, the location and di-
mensions of the reinforcement particles are determined randomly, 
as this reflects the inherent complexity and heterogeneity of real 
composite materials. However, in this presented study, it was 
decided to generate an RVE with a single reinforcing particle 
whose dimensions and location were identical for all simulations. 
The main advantage of this approach is that the results can be 
made comparable. Establishing a single reinforcing particle with 
the same parameters for all simulations makes it possible to 
compare results without the influence of randomness on the re-
sults. This makes it possible to accurately assess the effect of 
different analysis methods (Monte Carlo, RI) on the results for the 
same particle and to investigate the influence of parameters of 
these methods, such as the number of sampling points or the 
number of repetitions in the Monte Carlo method. A RVE with 
cylindrical, spherical and ellipsoidal particles was modelled, using 
COMSOL Multiphysics software. The dimensions and location 
were chosen so that the particle protruded outside the RVE (Fig-
ure 5). The following characteristic dimensions of the RVE and 
reinforcing particles were assumed (Figure 1): au=50μm, di=0.2au, 
bi=0.25au, li= au. For each particle, the reference volume Vp of the 
particles remaining in the RVE was determined using COMSOL's 
built-in measurement tools.  

a) b) c) 

   

Fig. 4. Modelled RVEs with a reinforcing particle in the shape of a cylinder (a), an ellipsoid (b) and a sphere (c) 

The volume Vp was compared with the results obtained by 
numerical integration using MC and RI methods and the relative 
error (11) was determined: 

𝛥𝑅 = |
𝑛𝑉𝑝−𝑉𝑝

𝑉𝑝
| ⋅ 100%,                                       (11) 
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where: Vp - the reference volume determined using COMSOL's 
built-in measurement tools, nVp - the volume of the reinforcing 
particle determined using MC and RI (10). 

In addition to determining the volume of the particle remaining 
in the RVE, the calculation time, expressed by the dimensionless 
parameter tR, was also determined: 

𝑡𝑅 =
𝑛𝑡𝑝

𝑡𝑝
,                                        (12) 

where: ntp - time to generate the RVE microstructure (Fig.4) with 
the MC and RI integration procedures active, tp - time to generate 
the RVE microstructure (Fig.4) with the MC and RI integration 
procedures deactivated.  

The results of the study of the effect of the method and its pa-
rameters on ΔR and tR parameters are presented below. 

3.1. Analysis of the effect of discretisation density and 
number of simulation repetitions on the accuracy of the 
determination of the volume of the reinforcement 
particle remaining in the RVE and the calculation time 

3.1.1. RI method 

The effect of the discretisation density, expressed by the mul-
tiplicative constant n used in formula (2) to determine the grid 
interval, on the value of the dimensionless parameters ΔR and tR 
was investigated. 

a) 

 
b) 

 
Fig. 5.   Effect of discretisation density on calculation time (b) and 

accuracy (a) 

The results obtained are presented in Figure 5. For cylindrical 
and ellipsoid-shaped reinforcing particles, the calculation accuracy 
increased with the number of points used for discretisation. For 
sphere-shaped particles, it was observed that an increase in mesh 
density could cause a decrease or increase in calculation accura-
cy. This may be due to the fact that when the grid density is high 
and the area analysed is relatively small, an edge effect can 
occur. This is based on the fact that points generated at the edges 
of spherical particles have a higher probability of being outside the 
study area. This means that the estimation of the particle volume 
may be inaccurate, as some points on the edges may be misclas-
sified as outside the area. For cylindrical and ellipsoidal particles, 
which have a smaller surface-to-volume ratio, the edge effect has 
less impact on the accuracy of the estimation. The smallest errors 
were recorded for spherical-shaped particles, while the largest 
errors were recorded for cylindrical-shaped particles. Differences 
in calculation accuracy may also be due to the aspect ratio of the 
solids (ratio of length, width and height) representing the rein-
forcement. If the solid has a more similar aspect ratio to the inter-
val of the grid of points, the distribution of points will be more 
uniform, improving the accuracy of the volume estimation. For 
spherical particles, where the aspect ratio in the three directions is 
the same, as is the grid interval, the smallest errors were ob-
served. 

As for the calculation time, as was to be expected, it always 
increases with an increase in the number of grid points. The cal-
culation time depended on the shape of the reinforcement particle 
and was longest for ellipsoid-shaped particles (the condition 
whose fulfilment causes a point to be considered as being inside 
the reinforcement particle is the most complex). 

Analysing the results shown in Figure 5, it can be seen that 
there is a compromise between calculation time and accuracy of 
results, which can be achieved when using, in formula (1), values 
of n contained in the range 5 ≤ n ≤ 7. 

3.1.2. MC method 

The effect of the number of sampling points, expressed by the 
multiplicative constant n used in formula (1), and the number of 
simulation repetitions ns on the value of the dimensionless param-
eters ΔR (Fig.6) and tR (Fig.7) was investigated. In determining the 

error in ΔR, for ns 1, in formula (11) nVp is the arithmetic mean of 
the volume of the particle remaining in the RVE determined in all 
simulations. 

a) 
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b) 

 
Fig. 6.   Influence of the number of sampling points used in the MC 

method on the calculation accuracy: results for a cylinder-shaped 
particle when using different numbers of simulation repetitions ns 
(a), results obtained for particles of different shapes when using 
the same number of repetitions ns =15 (b) 

Analysing the results shown in Figure 6, one can conclude 
that they are characterised by significant randomness, but in most 
cases a higher number of sampling points and simulation repeti-
tions leads to results with smaller errors. The sensitivity of the 
method to the shape of the reinforcing particle cannot be clearly 
determined, as for different numbers of sampling points some-
times more accurate results are obtained for a given particle 
shape than for others. In most cases, the smallest errors were 
recorded for sphere-shaped particles. This may be due to their 
greatest symmetry. Because of this symmetry, the points generat-
ed randomly inside a spherical particle are most evenly distribut-
ed. This even distribution of sampling points contributes to more 
accurate analysis results. For particles with other shapes, such as 
cylinders or ellipsoids, the asymmetry affects a less uniform distri-
bution of sampling points, which can lead to larger errors in the 
results. 

a) 

 
 

 

 

b) 

 
Fig. 7.   Influence of the number of sampling points used in the MC 

method on the calculation time: results for a cylinder-shaped 
particle when using different numbers of simulation repetitions ns 
(a), results obtained for particles of different shapes when using 
the same number of repetitions ns =15 (b) 

As far as calculation time was concerned, as expected, it in-
creased as the number of sampling points and the number of 
repetitions increased. The shape of the reinforcing particle also 
had a slight effect on the calculation time. It was longer for parti-
cles for which the condition for verifying that a point belonged to a 
particle was more complicated - the smallest calculation time 
occurred for spherical particles and the largest for elliptical parti-
cles. The observed deviations from this rule (for example, for n=9 
the calculation time for a cylindrical particle was longer than for an 
elliptical particle) may be due to the fact that when drawing n 
points, repeated points are rejected. If such points occur, the 
calculation time increases.  

a) 

 
b) 

 
Fig. 8.   Influence of the chosen method for nVp determination (arithmetic 

mean vs median) on the accuracy of the results obtained for 
cylindrical (a) and spherical (b) shaped particles 
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a) 

 
b) 

 
Fig. 9.   Influence of the number of sampling points and the number of 

replicates (a) and the shape of reinforcing particles on the 
distribution of standard deviation (b) 

As mentioned earlier, for simulations with ns 1, nVp was 
treated as the arithmetic mean of the volume of particle remaining 
in the RVE, calculated from all ns of the simulation. Alternatively, 
nVp can also be treated as the median of the results obtained over 
all iterations. A comparison of the effect of the method of deter-
mining the nVp (arithmetic mean vs. median) on the accuracy of 
the results is shown in Figure 8. It is noted that, for most of the 
cases analysed, determining the particle volume using the arith-
metic mean led to a higher accuracy of the calculations. There 
was no significant difference in the computation time of nVp when 
using the arithmetic mean and the median. 

The paper also analysed the distribution of the standard de-
viation (SD) and found it to be random (Fig.9). It was observed 
that a higher number of sampling and simulation repetitions usual-
ly results in a lower standard deviation. This effect is due to the 
fact that a larger number of samples leads to a more representa-
tive sample, which in turn translates into more stable and precise 
results. Increasing the number of simulation repetitions allows 
better averaging of the results and reduces errors due to random 
factors. The smallest scatter is observed for spherical particles, as 
their symmetry contributes to a more uniform distribution of ran-
dom sampling points. Other particle shapes may have greater 
variability in results due to less symmetry. 

 

3.2. Comparison of accuracy of results and calculation 
times obtained using different methods of numerical 
integration 

Figure 10 shows the relative calculation error and duration for 
the RI and MC methods. By analysing the results obtained, it can 
be seen that the RI method has a higher stability of results com-
pared to the MC method. Both methods allow similar accuracy to 
be achieved with similar calculation times. However, in the case of 
the MC method, it was noted that for some cases e.g.( e.g. ellip-
soid-shaped particle, Fig. 9.b, n=15) it is possible to achieve better 
accuracy in less time. However, it is worth noting that the results 
from the MC method are more unstable and subject to greater 
fluctuations, which often leads to a larger error with longer calcula-
tion times. At a desired error rate of, say, 0.5%, it is well-founded 
to use the RI method, which provides adequate calculation preci-
sion. However, when accepting a higher possible inaccuracy, e.g. 
of the order of 1.5%, it is worth considering the MC method, as in 
this case the calculation time is shorter, which can be important 
for certain applications.  

It is worth noting that the RI Method performs particularly well 
for spherical particles, where accurate results are obtained with 
short calculation times.  

When comparing the two methods, it is important to consider 
both the accuracy of the calculations and the complexity of the 
implementation. In terms of these issues, the RI method performs 
slightly better. 

The first aspect to consider is the availability of tools and li-
braries, as well as the ease of integration into existing software. 
With the Java programming language integrated into the Comsol 
environment, the RI method is more favourable to implement. The 
programme code for the RI method is shorter and does not re-
quire as many variables to be defined as for the MC method. This 
means that, in terms of programming resource availability, the RI 
method can be more efficient and require less effort. 

a) 

 
b) 
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c) 

 
Fig. 10. Relationship between the calculation error and its time for the RI 

and MC methods for a cylindrical (a), ellipsoid (b) and spherical 
(c) particle 

4. SUMMARY AND CONCLUSIONS 

The paper discusses numerical integration procedures em-
ployed in analysing the volume of reinforcement particles in algo-
rithms for generating representative volume elements (RVEs) in 
composites with discontinuous reinforcement, when the reinforc-
ing particles partially extend beyond the RVE. Two methods were 
compared, where the discretisation was performed in a systema-
tised (RI) or random (MC) manner, focusing on the influence of 
the integration parameters on the accuracy of calculations and the 
generation time of the composite microstructure. For the Monte 
Carlo method, an analysis was conducted on the impact of two 
parameters: the number of sampling points and the number of 
simulation repetitions. In the RI method, the focus was solely on 
the number of sampling points as a parameter. The value of this 
parameter, for both methods, was related to the size of the rein-
forcing particles and the dimensional size of the RVE. The study 
examined how both parameters affect the analysis results and 
identified their optimal values to achieve precise results with a 
short microstructure generation time for composites with cylindri-
cal, ellipsoidal, and spherical reinforcing particles. 

Both the number of sampling points and the number of simula-
tion repetitions were found to have a significant impact on the 
accuracy and stability of the results. Increasing the number of 
sampling points contributed to more precise results, but at the 
same time increased the RVE generation time. Increasing the 
number of simulation repetitions in the MC method led to similar 
effects. In addition, the RI method was observed to have a high 
stability of results in contrast to the MC method, where significant 
fluctuation and randomness of the results was noted. Therefore, 
when an error rate of less than 0.5% is required, the RI method is 
recommended, as it provides adequate precision in the calcula-
tions. On the other hand, when a slightly higher error level, for 
example 1.5%, is acceptable, the MC method can be considered, 
which has a shorter calculation time, which can be important in 
certain applications. 

As regards the sensitivity of the tested methods to the shape 
of the reinforcing particles, in general, the best accuracy of the 
results was obtained for particles with a spherical shape, which is 
characterised by the greatest symmetry. Moreover, the calculation 
time for spherical particles was usually the shortest, while for 
ellipsoidal particles it was the longest due to the greater complexi-

ty of the condition for checking the belongingness of the sampling 
point to the particle.  

The findings presented here can help designers make deci-
sions regarding the choice of an appropriate discretisation method 
and number of points when generating models of composites with 
discontinuous reinforcement. Through optimally selected parame-
ters, designers will be able to achieve accurate analysis results 
while minimising model generation time, which is of great im-
portance in engineering practice. Further research is planned to 
focus on developing advanced discretisation algorithms that take 
into account more complex forms of reinforcement particles. 

Nomenclature: 
au – side length of a representative volume element (RVE) 
di, bi, li – characteristic dimensions of the particles of the rein-
forcement fraction 
nVp – the estimated volume of the part of the reinforcement parti-
cle remaining in the RVE  
NMC – the number of points used in Monte Carlo method (MC) 
NRI – the number of points used in Regular Integration method (RI) 
Δ– the grid interval used in RI method  
Vp - the reference volume 
ΔR – the relative error 
tR – the relative calculation time 
n– the multiplicative constant 
ns – numbers of simulation repetitions used in MC method 
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