Czasopismo
2018
|
Vol. 22, nr 4
|
1389--1406
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In the present work, we consider a two dimensional axisymmetric problem of micropolar porous circular plate with thermal and chemical potential sources in the context of the theory of dual phase lag generalized thermoelastic diffusion. The potential functions are used to analyze the problem. The Laplace and Hankel transforms techniques are used to find the expressions of displacements, microrotation, volume fraction field, temperature distribution, concentration and stresses in the transformed domain. The inversion of transforms based on Fourier expansion techniques is applied to obtain the results in the physical domain. The numerical results for resulting quantities are obtained and depicted graphically. Effect of porosity, LS theory and phase lag are presented on the resulting quantities. Some particular cases are also deduced.
Czasopismo
Rocznik
Tom
Strony
1389--1406
Opis fizyczny
Bibliogr. 47 poz., wykr.
Twórcy
autor
- Department of Mathematics, Kurukshetra University Kurukshetra, Haryana, India, rajneesh_kuk@rediffmail.com
autor
- Department of Mathematics, Chaudhary Devilal University, Sirsa, Haryana, India, miglani_aseem@rediffmail.com
autor
- Department of Mathematics, Chaudhary Devilal University, Sirsa, Haryana, India, rekharani024@gmail.com
Bibliografia
- [1] Nowacki, M.: Couple stresses in the theory of thermoelasticity, Proceeding of IUTAM Symposia, Vienna, 1966.
- [2] Eringen, A.C.: Foundations of micropolar thermoelasticity, International Centre for Mechanical Science, Udline Course and Lectures 23, Springer-Verlag, Berlin, 1970.
- [3] Tauchert, T. R., Claus Jr. W. D. and Ariman, T.: The linear theory of micropolar thermoelasticity, Int. J. Engng. Sci., 6, 36-47, 1968.
- [4] Boschi, E. and Iesan, D.: A generalized theory of linear micropolar thermoelasticity, Mech., 8, 154-157, 1973.
- [5] Green, A. E. and Lindsay K. A.: Thermoelasticity, J. Elast., 2, 1-7, 1972.
- [6] Tauchert, T. R.: Thermal stresses in micropolar elastic solids, Acta Mech., 11, 155-169, 1971.
- [7] Nowacki, W. and Olszak, W.: Micropolar thermoelasticity, in Micropolar thermoelasticity, CISM Courses and Lectures, No 151, Udine, Springer-Verlag, Vienna, 1974.
- [8] Dost, S. and Taborrok, B.: Generalized micropolar thermoelasticity, Int. J. Engng. Sci., 16, 173-178, 1978.
- [9] Chandrasekharaiah, D. S.: Heat flux dependent micropolar thermoelasticity, Int. J. Engng. Sci., 24, 1389-1395, 1986.
- [10] Dhaliwal, R. S. and Singh, A.: Micropolar thermoelasticity, in R. Hetnarski (ed), Thermal stresses II, mechanical and mathematical methods, ser. 2, North Holland, Amsterdam, 1987.
- [11] Ciarletta, M.: Theory of micropolar thermoelasticity without energy dissipation, J. Ther. Stresses, 22, 6, 581-594, 1999.
- [12] Sherief, H. H., Hamza, F. A. and El-Sayed, A. M.: Theory of generalized micropolar thermoelasticity and an axisymmetric half-space problem, J. Ther. Stresses, 28, 4, 409-437, 2005.
- [13] Passarella, F. and Zampoli, V.: Reciprocal and variational principles in microplar thermoelasticty of type II, Acta Mech., 216, 1, 29-36, 2011.
- [14] Marin, M. and Beleanu, D.: On vibrations in thermoelasticity without energy dissipation for micropolar bodies, Boun. Val. Prob., 111, 1-19, 2016.
- [15] Othman, M. I. A., Tantawi, R. S. and Hilal, M. I. A.: Effect of initial stress and gravity field on micropolar thermoelastic solid with microptemperatures, J. Theo. Appl. Mech., 54, 3, 847-857, 2016.
- [16] Iesan, D.: Shock waves in micropoar elastic materials with voids, An. Stiint. Univ. Al. I. Cuza Iasi Sec I a Mat. 31, 177-186, 1985.
- [17] Marin, M.: some basic theorems in elastostatics of micropolar materials with voids, J. Comput. Appl. Math., 70, 115-126, 1996a.
- [18] Marin, M. Generalized solutions in elasticity of micropolar bodies with voids, Rev. Acad. Canaria Ciencias, 8, 101-106, 1996b.
- [19] Kumar, R. and Choudhary, S.: Disturbance due to mechanical sources in micropolar elastic medium with voids, J. Sou. Vib., 256, 1, 1-15, 2002.
- [20] Kumar, R. and Choudhary, S.: Interaction due to mechanical sources in micropolar elastic medium with voids, J. Sou. Vib., 266, 4, 889-904, 2003.
- [21] Kumar, R. and Deswal, S. Some problems of wave propagation in a micropolar elastic medium with voids, J. Vib. Cont., 12, 8, 849-879, 2006.
- [22] Passarella, F., Tibullo, V. and Zampoli, V.:On the heat flux dependent thermoelasticity for micropolar porous media, J. Ther. Stresses, 34, 778-794, 2011.
- [23] Marin, M., Abd-Alla, A., Raducanu, D. and Abo-Dahab, S.: Structural continuous dependence in micropolar porous bodies, Comp. Mat. Cont., 45, 2, 107-125, 2015.
- [24] Yong Ai, Z. and Wu, Q. L.: The behavior of a multilayered porous thermoelastic medium with anisotropic thermal diffusivity and permeability, Comp. Geotech., 76, 129-139, 2016.
- [25] Nowacki, W.: Dynamical problems of thermodiffusion in solids - I, Bull. Pol. Acad. Sci. Ser., Sci. Tech., 22, 55-64, 1974a.
- [26] Nowacki, W.: Dynamical problems of thermodiffusion in solids - II, Bull. Pol. Acad. Sci. Ser., Sci. Tech., 22, 205-211, 1974b.
- [27] Nowacki, W.: Dynamical problems of thermodiffusion in solids - III, Bull. Pol. Acad. Sci. Ser., Sci. Tech., 22, 257-266, 1974c.
- [28] Nowacki, W.: Dynamical problems of diffusion in solids, Engng. Fract. Mech., 8, 261-266, 1976.
- [29] Sherief, H. H. and Saleh, H.: A half space problem in the theory of generalized thermoelastic diffusion, Int. Sol. Struct., 42, 15, 4484-4493, 2005.
- [30] Kumar, R. and Kansal, T.: Fundamental solution in the theory of micropolar thermoelastic diffusion with voids, Comp. Appl. Math., 31, 1, 2012.
- [31] El-Sayed, M. A two dimensional generalized thermoelastic diffusion problem for a half space, Math. Mech. Solids, 21, 9, 1045-1060, 2014.
- [32] Abbas, I. A., Kumar, R. and Kaushal, S.: Interaction due to thermal source in micropolar thermoelastic diffusion medium, J. Comp. Theo. Nanosci., 12, 8, 1780-1786, 2015.
- [33] El-Karamany, A. S. and Ezzat, M. A.: Thermoelastic diffusion with memory dependent derivative, J. Ther. Stresses, 39, 9, 2016.
- [34] Tzou, D. Y.: A unified approach for heat conduction from macro-to-micro-scales, J. Heat Transfer, 117, 8-16, 1995a.
- [35] Tzou, D. Y.: Macro-to-micro scale heat transfer: the lagging behavior, Washington, DC, Taylor & Francis, 1996.
- [36] Tzou, D. Y.: The generalized lagging response in small scale and high rate heating, Int. J. Heat Transfer, 38, 17, 3231-3240, 1995b.
- [37] Liu, K. C. and Chang, P. C.: Analysis of dual phase lag heat conduction in cylindrical system with a hybrid method, Appl. Math. Model., 31,2, 369-380, 2007.
- [38] Kumar, R. and Gupta, V.: Plane wave propagation in an anisotropic dual phase lag thermoelastic diffusion medium, Multidis. Model. Mat. Struct., 10, 4, 562-592, 2014.
- [39] Abbas, I. A. and Zenkour, A. M.: Dual phase lag model on thermoelastic interactions in a semi infinite medium subjected to a ramp type heating, J. Comput. Theo. Nanosci., 11, 3, 642-645, 2014.
- [40] Ezzat, M. A., El-Karamany, A. S. and El-Bary, A. A. On dual phase lag thermoelasticity theory with memory dependent derivative, Mechanics of Advanced Materials and Structures, (2016).
- [41] Othman, M. I. A., Atwa, S. Y. and Elwan, A. W.: The effect of phase lag and gravity field on generalized thermoelaastic medium in two and three dimensions, J. Comp. Theo. Nanosci., 13, 5, 2827-2837, 2016.
- [42] Kumar, R., Sharma, N. and Lata, P.: Effects of two temperatures and thermal phase lags in a thick plate due to a ring load with axisymmetric heat supply, Comp. Meth. Sci. Tech., 22, 3, 153-162, 2016.
- [43] Kumar, R. and Partap, G.: Porosity effect on circular crested waves in micropolar thermoelastic homogeneous isotropic plate, Int. J. Appl. Math. Mech., 4, 2, 1-18, 2008.
- [44] Kumar, R. and Kansal, T.: Propagation of Lamb waves in transversely isotropic thermoelastic diffusive plate, Int. J. Sol. Struc., 45, 5890-5913, 2008.
- [45] Chandrasekharaiah, D. S.: Thermoelasticity with second sound: a review, Appl. Mech. Rev., 39, 355-376, 1986.
- [46] Eringen, A. C.: Plane waves in non local micropolar elasticity, Int. J. Engng. Sci., 22, 1113-1121, 1984.
- [47] Dhaliwal, R. S. and Singh, A.: Dynamical coupled thermoelasticity, Hindustan Publication Corporation, New Delhi, 1980.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6b484ec4-eef1-4d3b-a9ff-09a545b5faf1