Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | R. 16, nr 3 | 132--138
Tytuł artykułu

Residual stress in multilayered composites : general overview

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Naprężenia resztkowe w kompozytach wielowarstwowych : przegląd zagadnienia
Języki publikacji
EN
Abstrakty
EN
The appearing process-induced stresses influence the mechanical performance of a composite structure and can initiate pre-load damage. Residual stresses evaluation is particularly important in multilayered composites where the ply orientations and stacking sequences highly influence the appearing stresses. Various numerical methods are used to simulate the growth and development of arising residual stresses. The general aim of the current work is to present the fundamental relations to predict the strains and stresses during the manufacture of laminated composites. Additionally, different modeling techniques and constitutive models are presented with the intention of understanding the different phenomena taking place during processing and which models best predict the process effects. As an example, a simple finite element model of a thermally loaded laminate is proposed to present the heterogeneities in through-thickness residual stresses distribution.
PL
Obecność naprężeń poprocesowych wpływa na charakterystykę mechaniczną struktury kompozytowej i może inicjować wstępne zniszczenie. Oszacowanie wartości naprężeń resztkowych jest szczególnie istotne w kompozytach wielowarstwowych, w których konfiguracja ma znaczny wpływ na pojawiające się naprężenia. Istnieje wiele modeli opisujących powstawanie i rozwój naprężeń resztkowych. Celem prezentowanej pracy jest przedstawienie podstawowych związków stosowanych w opisie naprężeń powstałych w trakcie procesu wytwarzania. Zaprezentowano różne techniki modelowania oraz związki konstytutywne z zamiarem opisu różnorakich zjawisk pojawiających się w trakcie wytwarzania laminatów. W celu wstępnej prezentacji heterogenicznego rozkładu naprężeń resztkowych przedstawiono model numeryczny wielowarstwowej płyty kompozytowej obciążonej termicznie.
Wydawca

Rocznik
Strony
132--138
Opis fizyczny
Bibliogr. 55 poz., rys.
Twórcy
autor
  • Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow , mchwal@pk.edu.pl
autor
  • Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow
  • Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow
  • Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow
autor
  • Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow
Bibliografia
  • [1] Hahn H.T., Residual stresses in polymer matrix composite laminates, J. Compos. Mater. 1976, 10, 265-277.
  • [2] Kim R.Y., Hahn H.T., Effect of curing stresses on the first ply-failure in composite laminates, J. Compos. Mater. 1979, 13, 2-16.
  • [3] White S.R., Hahn H.T., Process modeling of composite materials: residual stress development during cure. Part I. Model formulation, J. Compos. Mater. 1992, 26, 2402-2422.
  • [4] Noor A.K., Burton W.S., Computational models for hightemperature multilayered composite plates and shells, Appl. Mech. Rev. 1992, 45, 419-446.
  • [5] Gopal A.K., Adali S., Verijenko V.E., Optimal temperature profiles for minimum residual stress in the cure process of polymer composites, Compos. Struct. 2000, 48, 99-106.
  • [6] Tsai S.W., Theory of Composite Design, Think Composites, 1992.
  • [7] Isaac R.V., Residual stresses in composites, In: Kessler M.R. (ed.), Advanced Topics in Characterization of Composites, Trafford Publishing 2004.
  • [8] Msallem Y.A., Jacquemin F., Poitou A., Residual stresses formation during the manufacturing process of epoxy matrix composites: resin yield stress and anisotropic chemical shrinkage, Int. J. Mater. Form. 2010, 3, 1363-1372.
  • [9] Safarabadi M., Shokrieh M.M., Understanding residual stresses in polymer matrix composites, In: Shokrieh M.M. (ed.), Residual Stresses in Composite Materials, Woodhead Publishing 2014, 197-232.
  • [10] Telford R., Katnam K.B., Young T.M., The effect of moisture ingress on through-thickness residual stresses in unsymmetric composite laminates: A combined experimentalnumerical analysis, Compos. Struct. 2014, 107, 502-511.
  • [11] Yuan Z., Wang Y., Peng X, Wang J., Wei S., An analytical model on through-thickness stresses and warpage of composite laminates due to tool-part interaction, Compos. B 2016, 91, 408-413.
  • [12] Muc A., Krawiec Z., Design of composite plates under cyclic loading, Compos. Struct. 2000, 48, 139-144.
  • [13] Mao H., Mahadevan S., Fatigue damage modelling of composite materials, Compos. Struct. 2002, 58, 405-410.
  • [14] Campbell F.C., Fatigue and fracture: understanding the basics, ASM International 2012.
  • [15] Alderliesten R.C., Critical review on the assessment of fatigue and fracture in composite materials and structures. Eng. Failure Analys. 2013, 35, 370-379.
  • [16] Yang L., Yan Y., Ma J., Liu B., Effects of inter-fiber spacing and thermal residual stress on transverse failure of fiberreinforced polymer-matrix composites, Comput. Mater. Sci. 2013, 68, 255-262.
  • [17] Mostafa N.H., Ismarrubie Z.N., Sapuan S.M., Sultan M.T.H., Effect of fabric biaxial prestress on the fatigue of woven E-glass/polyester composites, Mater. Des. 2016, 92, 579-589.
  • [18] Parlevliet P.P., Bersee H.E.N., Beukers A., Residual stresses in thermoplastic composites - A study of the literature - Part I: Formation of residual stresses, Compos. A 2007, 37, 1847-1857.
  • [19] Fernlund G., Poursartip A., Twigg G., Albert C., Residual stress, spring- in and warpage in autoclaved composite parts, Proc. 14th International Conference on Composite Materials (ICCM-14), San Diego, 2003.
  • [20] Bert C.W., Thompson G.L., A method for measuring planar residual stresses in rectangularly orthotropic materials, J. Compos. Mater. 1968, 2, 244-253.
  • [21] Schajer G.S., Yang L., Residual-stress measurement in orthotropic materials using the hole-drilling method, Exper. Mech. 1994, 34, 324-333.
  • [22] Wetherhold R.C., Wang J., Controlling thermal deformation by using laminated plates, Compos. B 1996, 27, 51-57.
  • [23] Fenn R.H., Jones A.M., Wells G.M., X-Ray diffraction investigation of triaxial residual stresses in composite materials, J. Compos. Mater. 1993, 27, 1338-1351.
  • [24] Joh D., Byun K.Y., Ha J., Thermal residual stresses in thick graphite/epoxy composite laminates-uniaxial approach, Exper. Mech. 1993, 33, 70-76.
  • [25] Hufenbach W., Gude M., Ullrich H.J., Czulak A., Danczak M., Böhm R., Zscheyge M., Geske V., Computer tomography-aided non-destructive and destructive testing in composite engineering, Compos. Theory. Pract. 2012, 4, 279-284.
  • [26] Perreux D., Lazuardi D., The effects of residual stress on the non-linear behaviour of composite laminates. Part I. Experimental results and residual-stress assessments, Compos. Sci. Technol. 2001, 61, 167-175.
  • [27] Parlevliet P.P., Bersee H.E.N., Beukers A., Residual stresses in thermoplastic composites - A study of the literature - Part II: Experimental techniques, Compos. A 2007, 38, 651-665.
  • [28] Shokrieh M.M., Mohammadi A.R.G., Destructive techniques in the measurement of residual stresses in composite materials: an overview, In: Shokrieh M.M. (ed.), Residual Stresses in Composite Materials, Woodhead Publishing, 2014, 15-57.
  • [29] Shokrieh M.M., Mohammadi A.R.G., Non-destructive testing (NDT) techniques in the measurement of residual stresses in composite materials: an overview, In Shokrieh M.M. (ed.), Residual Stresses in Composite Materials, Woodhead Publishing, 2014, 58-75.
  • [30] Gopal A., Adali S., Verijenko V.E., Optimal temperature profiles for minimum residual stress in the cure process of polymer composites, Compos. Struct. 2000, 48, 99-106.
  • [31] Cheung A., Yu Y., Pochiraju K., Three-dimensional finite element simulation of curing of polymer composites, Finite Elem. Anal. Des. 2004, 40, 895-912.
  • [32] Zhao L.G., Warrior N.A., Long A.C., A micromechanical study of residual stress and its effect on transverse failure in polymer-matrix composites, Int. J. Sol. Struct. 2006, 43, 5449-5467.
  • [33] Metehri A., Serier B., Bouiadjra B.B., Belhouari M., Mecirdi M.A., Numerical analysis of the residual stresses in polymer matrix composites, Mater. Des. 2009, 30, 2332-2338.
  • [34] Abdelal G.F., Robotham A., Cantwell W., Autoclave cure simulation of composite structures applying implicit and explicit FE techniques, Int. J. Mech. Mater. Des. 2013, 9, 55-63.
  • [35] Shokrieh M.M., Shahri S.M.K., Modeling residual stresses in composite materials, In: Shokrieh M.M. (ed.), Residual Stresses in Composite Materials, Woodhead Publishing, 2014, 173-193.
  • [36] Parlevliet P.P., Bersee H.E.N., Beukers A., Residual stresses in thermoplastic composites - A study of the literature - Part III: Effects of thermal residual stresses, Compos. A 2007, 38, 1581-1596.
  • [37] Tseng S.C., Osswald T.A., Prediction of shrinkage and warpage of fiber reinforced thermoset composite parts, J. Reinf. Plast. Compos 1994, 13, 698-721.
  • [38] Svanberg J.M., Holmberg J.A., Prediction of shape distortions-part I. FE implementation of a path depending constitutive model, Compos. A 2004, 35, 711-721.
  • [39] Huang X., Gillespie J.W., Bogetti T., Process induced stress for woven fabric thick section composite structures, Compos. Struct. 2000, 49, 303-312.
  • [40] Kim Y.K., White S.R., Stress relaxation during cure of 3501-6 epoxy resin, Proc. ASME Int. Engineering Congress and Exposition, San Francisco 1995, 43-56.
  • [41] Zhao L.G., Warrior N.A., Long A.C., A thermo-viscoelastic analysis of process-induced residual stress in fibre reinforced polymer-matrix composites, Mater. Sci. Eng. A 2007, 452-453, 483-498.
  • [42] Ding A., Li S., Sun J., Wang J., Zu L., A thermo-viscoelastic model of process-induced residual stresses in composite structures with considering thermal dependence, Compos. Struct. 2016, 136, 34-43.
  • [43] Shokrieh M.M., Daneshvar A., Akbari S., Reduction of thermal residual stresses of laminated polymer composites by addition of carbon nanotubes, Mater. Des. 2014, 53, 209-216.
  • [44] Ghasemi A.R., Mohammadi M.M., Mohandes M., The role of carbon nanofibers on thermo mechanical properties of polymer matrix composites and their effect on reduction of residual stresses, Compos. B 2015, 77, 519-527.
  • [45] Muc A., Optymalizacja struktur kompozytowych i procesów technologicznych ich wytwarzania, Księgarnia Akademicka, Kraków 2005.
  • [46] Yue G., Zhang B., Dai F., Du S., Three-dimensional cure simulation of stiffened thermosetting composite panels, J. Mater. Sci. Techol. 2010, 26, 467-471.
  • [47] Gillham J.K., Formation and properties of thermosetting and high tg polymeric materials, Polym. Eng. Sci. 1986, 26, 1429-1433.
  • [48] Kamal M.R., Sourour S., Kinetics and thermal characterization of thermoset cure, Polym. Eng. Sci. 1973, 13, 59-64.
  • [49] Hubert P., Johnston A., Poursartip A., Nelson K., Cure kinetics and viscosity models for hexcel 8552 epoxy resin. Proc. Int. SAMPE Symposium and Exhibition 2001, 46, 2341-2354.
  • [50] Muc A., Saj P., Numerical optimization of mould temperature regime in RTM process, Proc. ICCM/13, 2001, Beijing.
  • [51] Aboudi J., Pindera M.J., Arnold S.M., Thermoelastic theory for the response of materials functionally graded in two directions, Int. J. Solid Struct. 1996, 33, 931-966.
  • [52] Aboudi J., Arnold S.M., Bednarcyk B.A., Micromechanics of Composite Materials: A Generalized Multiscale Analysis Approach, Elsevier, 2013.
  • [53] Barbero E.J., Finite Element Analysis of Composite Materials Using Abaqus, CRC Press, 2013.
  • [54] Chwał M., Muc A., Transversely isotropic properties of carbon nanotube/polymer composites, Compos. B 2016, 88, 295-300.
  • [55] Muc A., Muc-Wierzgoń M., Discrete optimization of composite structures under fatigue constraints, Compos. Struct. 2015, 133, 834-839.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6b0ba862-c735-47f7-860a-c79aa1f1a09c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.