Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 3 | 43--50
Tytuł artykułu

A Review of Isolation Techniques for 5G MIMO Antennas

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper offers an analysis of mutual coupling reduction techniques used in MIMO antennas designed for sub-6 GHz, 28 GHz, and 28/38 GHz dual frequency bands which are allocated to 5G technology. The said techniques take into account size, gain, isolation, and all diversity-related parameters, such as envelope correlation coefficient (ECC), directive gain (DG), and channel capacity loss (CCL). A review of current technologies is presented in the paper too. The isolation techniques are studied in detail and comparisons between the various works are drawn. Finally, the best isolation technique suitable for specific bands, applications and different port numbers is determined.
Słowa kluczowe
Wydawca

Rocznik
Tom
Strony
43--50
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
Bibliografia
  • [1] K. Du, Y. Wang, and Y. Hu, "Design and Analysis on Decoupling Techniques for MIMO Wireless Systems in 5G Applications", Applied Sciences, vol. 12, no. 8, art. no. 3816, 2022.
  • [2] P. Sharma et al., "MIMO Antennas: Design Approaches, Techniques and Applications", Sensors, vol. 22, no. 20, art. no. 7813, 2022.
  • [3] A.E. Farahat and K.F.A. Hussein, "Dual-band (28/38 GHz) Wideband MIMO Antenna for 5G Mobile Applications", IEEE Access, vol. 10, pp. 32213-32223, 2022.
  • [4] M. Hussain et al., "Isolation Improvement of Parasitic Element-loaded Dual-band MIMO Antenna for mmWave Applications", Micromachines, vol. 13, no. 11, art. no. 1918, 2022.
  • [5] T. Taga, "Analysis for Mean Effective Gain of Mobile Antennas in Land Mobile Radio Environments", IEEE Transactions on Vehicular Technology, vol. 39, no. 2, pp. 117-131, 1990.
  • [6] A. Yacoub, M. Khalifa, and D.N. Aloi, "Compact 2×2 Automotive MIMO Antenna Systems for Sub-6 GHz 5G and V2X Communications", Progress In Electromagnetics Research B, vol. 93, pp. 23-46, 2021.
  • [7] D. Dileepan, S. Natarajan, and R. Rajkumar, "A High Isolation Multiband MIMO Antenna without Decoupling Structure for WLAN/WiMAX/5G Applications", Progress in Electromagnetics Research C, vol. 112, pp. 207-219, 2021.
  • [8] T.M. Guan and S.K.A. Rahim, "Compact Monopole MIMO Antenna for 5G Application", Microwave and Optical Technology Letters, vol. 59, no. 5, pp. 1074-1077, 2017.
  • [9] J. Huang et al., "A Quad-port Dual-band MIMO Antenna Array for 5G Smartphone Applications", Electronics, vol. 10, no. 5, art. no. 542, 2021.
  • [10] J. Huang et al., "Dual-band MIMO Antenna for 5G/WLAN Mobile Terminals", Micromachines, vol. 12, no. 5, art. no. 489, 2021.
  • [11] Z.F. Al-Azzawi et al., "Designing Eight-port Antenna Array for Multi-band MIMO Applications in 5G Smartphones", Journal of Telecommunications and Information Technology, no. 4, 2023.
  • [12] S. Saxena et al., "MIMO Antenna with Built-in Circular Shaped Isolator for sub-6 GHz 5G Applications", Electronics Letters, vol. 54, no. 8, pp. 478-480, 2018.
  • [13] M.M. Kamal et al., "Infinity Shell Shaped MIMO Antenna Array for mmWave 5G Applications", Electronics, vol. 10, no. 2, art. no. 165, 2021.
  • [14] K.R. Mahmoud and A.M. Montaser, "Optimized 4×4 Millimeter-wave Antenna Array with DGS Using Hybrid ECFO-NM Algorithm for 5G Mobile Networks", IET Microwaves, Antennas & Propagation, vol. 11, no. 11, pp. 1516-1523, 2017.
  • [15] S. Rahman et al., "Nature Inspired MIMO Antenna System for Future mmWave Technologies", Micromachines, vol. 11, no. 12, art. no. 1083, 2020.
  • [16] S.F. Jilani and A. Alomainy, "Millimeter-wave T-shaped MIMO Antenna with Defected Ground Structures for 5G Cellular Networks", IET Microwaves, Antennas & Propagation, vol. 12, no. 5, pp. 672-677, 2018.
  • [17] M. Hussain et al., "Design and Characterization of Compact Broadband Antenna and its MIMO Configuration for 28 GHz 5G Applications", Electronics, vol. 11, no. 4, art. no. 523, 2022.
  • [18] A. Ahmad, D.Y. Choi, and S. Ullah, "A Compact Two Elements MIMO Antenna for 5G Communication", Scientific Reports, vol. 12, art. no. 3608, 2022.
  • [19] A. Kumar et al., "Circularly Polarized Dielectric Resonator Based Two Port Filtenna for Millimeter-wave 5G Communication System", IETE Technical Review, vol. 39, no. 6, pp. 1501-1511, 2022.
  • [20] S.S. Al-Bawri et al., "Hexagonal Shaped Near Zero Index (NZI) Metamaterial Based MIMO Antenna for Millimeter-wave Application", IEEE Access, vol. 8, pp. 181003-181013, 2020.
  • [21] N. Hussain, M. Jeong, J. Park, and N. Kim, "A Broadband Circularly Polarized Fabry-Perot Resonant Antenna Using a Single-layered PRS for 5G MIMO Applications", IEEE Access, vol. 7, pp. 42897-42907, 2019.
  • [22] M.I. Khan et al., "A Compact mmWave MIMO Antenna for Future Wireless Networks", Electronics, vol. 11, no. 15, art. no. 2450, 2022.
  • [23] M. Bilal et al., "High-isolation MIMO Antenna for 5G Millimeter-wave Communication Systems", Electronics, vol. 11, no. 6, article no. 962, 2022.
  • [24] A.A.R. Saad and H.A. Mohamed, "Printed Millimeter-wave MIMO-based Slot Antenna Arrays for 5G Networks", AEU-International Journal of Electronics and Communications, vol. 99, pp. 59-69, 2019.
  • [25] M.A. El-Hassan, K.F.A. Hussein, and A.E. Farahat, "Compact Dual-band (28/38 GHz) Patch for MIMO Antenna System of Polarization Diversity", The Applied Computational Electromagnetics Society Journal, vol. 37, no. 6, pp. 716-725, 2022.
  • [26] N. Sghaier et al., "Millimeter-wave Dual-band MIMO Antennas for 5G Wireless Applications", Journal of Infrared, Millimeter, and Terahertz Waves, vol. 44, pp. 297-312, 2023.
  • [27] A.R. Sabek, W.A.E. Ali, and A.A. Ibrahim, "Minimally Coupled Two-element MIMO Antenna with Dual Band (28/38 GHz) for 5G Wireless Communications", Journal of Infrared, Millimeter, and Terahertz Waves, vol. 43, pp. 335-348, 2022.
  • [28] F. Alnemr, M.F. Ahmed, and A.A. Shaalan, "A Compact 28/38 GHz MIMO Circularly Polarized Antenna for 5G Applications", Journal of Infrared, Millimeter, and Terahertz Waves, vol. 42, pp. 338-355, 2021.
  • [29] S.I. Naqvi et al., "Integrated LTE and Millimeter-wave 5G MIMO Antenna System for 4G/5G Wireless Terminals", Sensors, vol. 20, no. 14, art. no. 3926, 2020.
  • [30] S. Gupta, Z. Briqech, A.R. Sebak, and T. Denidni, "Mutual-coupling Reduction Using Metasurface Corrugations for 28 GHz MIMO Applications", IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2763-2766, 2017.
  • [31] H. Zahra et al., "A 28 GHz Broadband Helical Inspired End-fire Antenna and its MIMO Configuration for 5G Pattern Diversity Applications", Electronics, vol. 10, no. 4, art. no. 405, 2021.
  • [32] H.M. Marzouk, M.I. Ahmed, and A.A. Shaalan, "Novel Dual-band 28/38 GHz MIMO Antennas for 5G Mobile Applications", Progress in Electromagnetics Research C, vol. 93, pp. 103-117, 2019.
  • [33] B.A. Esmail and S. Koziel, "High Isolation Metamaterial-based Dual-band MIMO Antenna for 5G Millimeter-wave Applications", AEU-International Journal of Electronics and Communications, vol. 158, art. no. 154470, 2023.
  • [34] A. Omar, M. Hussein, I.J. Rajmohan, and K. Bathich, "Dual-band MIMO Coplanar Waveguide-fed-slot Antenna for 5G Communications", Heliyon, vol. 7, no. 4, art. no. 06779, 2021.
  • [35] W.A.E. Ali, A.A. Ibrahim, and A.E. Ahmed, "Dual-band Millimeter Wave 2×2 MIMO Slot Antenna with Low Mutual Coupling for 5G Networks", Wireless Personal Communications, vol. 129, pp. 2959-2976, 2023.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6b016013-c6c2-4f7c-8a02-84c9f2bfb027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.