Czasopismo
2011
|
Vol. 59, no 2
|
185--196
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We introduce and study a natural class of variable exponent ℓp spaces, which generalizes the classical spaces ℓp and c0. These spaces will typically not be rearrangement-invariant but instead they enjoy a good local control of some geometric properties. Some geometric examples are constructed by using these spaces.
Słowa kluczowe
Rocznik
Tom
Strony
185--196
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Aalto University, Mathematics P.O. Box 11100, FI-00076 Aalto, Finland , talponen@cc.hut.fi
Bibliografia
- [1] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucia, J. Pelant and V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books Math. 8, Springer, New York, 2001.
- [2] R. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78 (1999), 541–585.
- [3] W. Johnson and J. Lindenstrauss (eds.), Handbook of the Geometry of Banach Spaces, Vol. I, North-Holland, Amsterdam, 2001.
- [4] K. Kunen and H. Rosenthal, Martingale proofs of some geometric results in Banach spaces, Pacific J. Math. 100 (1982), 153–175.
- [5] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I. Sequence Spaces, Ergeb. Math. Grenzgeb. 92, Springer, Berlin, 1977.
- [6] —, —, Classical Banach Spaces. II. Function Spaces, Ergeb. Math. Grenzgeb. 97, Springer, Berlin, 1979.
- [7] A. Pełczynski, Universal bases, Studia Math. 32 (1969), 247–268.
- [8] G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Reg. Conf. Ser. Math. 60, Amer. Math. Soc., 1986.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-6af0f2ea-bc69-4fa3-b5b4-598440ad12b8