Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no. 3 | 474--482
Tytuł artykułu

Predictive analysis on the influence of AL2o3 and CuO nanoparticles on the thermal conductivity of R1234yf-based refrigerants

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nano-enhanced refrigerants are substances in which the nanoparticles are suspended in the refrigerantatthe desired concentration. They have the potential to improve the performance of refrigeration and air-conditioning systems that use vapour compression. This study focuses on the thermal conductivity of alumina (Al2O3) and cupric oxide (CuO) nanoparticles immersed in 2,3,3,3-tetrafluoropropene (R1234yf). The thermal conductivity of nano-refrigerants was investigated using appropriate models from earlier studies where the volume concentration of particles and temperatures were varied from 1% to 5% and from 273 K to 323K, respectively. The acquired results are supported by prior experimental investigations on R134a-based nano-refrigerants undertaken by the researchers. The main investigation results indicate that the thermal conductivity of Al2O3/R1234yf and CuO/R1234yf is enhanced with the particle concentrations, interfacial layer thickness, and temperature. Also, the thermal conductivity of Al2O3/R1234yf and CuO/R1234yf decreases with particle size. The thermal conductivity of Al2O3/R1234yf and CuO/R1234yf nano-refrigerants become enhanced with a volume concentration of nano-sized particles by 41.2% and 148.1% respectively at 5% volume concentration and 323K temperature. The thermal conductivity of Al2O3/R1234yf reduces with temperature, by upto 3% of nanoparticle addition and after that, it enhances. Meanwhile, it declines with temperature, by upto 1% of CuO nanoparticle inclusion for CuO/R1234yf. CuO/R1234yf has a thermal conductivity of 16.69% greater than Al2O3/R1234yf at a 5% volume concentration. This paper also concludes that, among the models for thermal conductivity study, Stiprasert’s model is the most accurate and advanced.
Wydawca

Rocznik
Strony
474--482
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India, bibinb.s2019@vitstudent.ac.in
  • Department of Mechanical Engineering, JNTUH College of Engineering, Hyderabad 500085, India, bhramara74@jntuh.ac.in
  • Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Bialystok University of Technology, Wiejska 45D, 15-351, Bialystok, Poland, a.mystkowski@pb.edu.pl
  • Department of Thermal and Energy Engineering, School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore 632 014, India, edison.g@vit.ac.in
Bibliografia
  • 1. Choi S, Eastman J. Enhancing thermal conductivity of fluids with nanoparticles. In: 1995 International mechanical engineering con-gress and exhibition. San Francisco. CA (United States). 1995.
  • 2. Shukla RK, Dhir VK. Effect of Brownian motion on thermal conduc-tivity of nanofluids. Journal of Heat Transfer [Internet]. 2008 Mar 18;130(4). Available from: https://doi.org/10.1115/1.2818768
  • 3. Jang SP, Choi SJ. Effects of various parameters on nanofluid thermal conductivity. Journal of Heat Transfer [Internet]. 2006 Aug 2;129(5):617–23. Available from: https://doi.org/10.1115/1.2712475
  • 4. Irfan M. Energy transport phenomenon via Joule heating and as-pects of Arrhenius activation energy in Maxwell nanofluid. Waves in Random and Complex Media [Internet]. 2023 Apr 12;1–16. Availa-ble from: https://doi.org/10.1080/17455030.2023.2196348
  • 5. Irfan M. Influence of thermophoretic diffusion of nanoparticles with Joule heating in flow of Maxwell nanofluid. Numerical Methods for Partial Differential Equations [Internet]. 2022 Sep 23;39(2):1030–41. Available from: https://doi.org/10.1002/num.22920
  • 6. Rafiq K, Irfan M, Khan MA, Anwar MS, Khan W. Arrhenius activation energy theory in radiative flow of Maxwell nanofluid. Physica Scripta [Internet]. 2021 Jan 28;96(4):045002. Available from: https://doi.org/10.1088/1402-4896/abd903
  • 7. Irfan M, Khan M, Khan WA. Heat sink/source and chemical reaction in stagnation point flow of Maxwell nanofluid. Applied Physics A [In-ternet]. 2020 Oct 27;126(11). Available from: https://doi.org/10.1007/s00339-020-04051-x
  • 8. Irfan. Study of Brownian motion and thermophoretic diffusion on non-linear mixed convection flow of Carreau nanofluid subject to variable properties. Surfaces and Interfaces. 2021 Apr;23(100926).
  • 9. Irfan M, Anwar MS, Kebail I, Khan WA. Thermal study on the per-formance of Joule heating and Sour-Dufour influence on nonlinear mixed convection radiative flow of Carreau nanofluid. Tribology In-ternational [Internet]. 2023 Oct 1;188:108789. Available from: https://doi.org/10.1016/j.triboint.2023.108789
  • 10. Ali U, Irfan M. Thermal aspects of multiple slip and Joule heating in a Casson fluid with viscous dissipation and thermo-solutal convec-tive conditions. International Journal of Modern Physics B [Internet]. 2022 Sep 22;37(05). Available from: https://doi.org/10.1142/s0217979223500431
  • 11. Irfan M, Rafiq K, Khan M, Waqas M, Anwar MS. Theoretical analy-sis of new mass flux theory and Arrhenius activation energy in Car-reau nanofluid with magnetic influence. International Communica-tions in Heat and Mass Transfer [Internet]. 2021 Jan 1;120:105051. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2020.105051
  • 12. Ali U, Irfan M, Akbar NS, Rehman KU, Shatanawi W. Dynamics of Soret–Dufour effects and thermal aspects of Joule heating in multi-ple slips Casson–Williamson nanofluid. International Journal of Modern Physics B [Internet]. 2023 Jun 9. Available from: https://doi.org/10.1142/s0217979224502060
  • 13. Irfan M, Aftab R, Khan M. Thermal performance of Joule heating in Oldroyd-B nanomaterials considering thermal-solutal convective conditions. Chinese Journal of Physics [Internet]. 2021 Jun 1;71:444–57. Available from: https://doi.org/10.1016/j.cjph.2021.03.010
  • 14. Irfan M, Khan W, Pasha AA, Alam MI, Islam N, Zubair M. Signifi-cance of non-Fourier heat flux on ferromagnetic Powell-Eyring fluid subject to cubic autocatalysis kind of chemical reaction. Internation-al Communications in Heat and Mass Transfer [Internet]. 2022 Nov 1;138:106374. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2022.106374
  • 15. Jiang W, Ding G, Peng H, Gao Y, Wang K. Experimental and model research on nanorefrigerant thermal conductivity. Science and Technology for the Built Environment [Internet]. 2009 May 1;15(3): 651–69. Available from: https://doi.org/10.1080/10789669.2009.10390855
  • 16. Mahbubul IM, Saadah AR, Saidur R, Khairul MA, Kamyar A. Ther-mal performance analysis of Al2O3/R-134a nanorefrigerant. Interna-tional Journal of Heat and Mass Transfer [Internet]. 2015 Jun 1;85:1034–40. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.038
  • 17. Jiang W, Ding G, Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants. International Journal of Thermal Sciences [Internet]. 2009 Jun 1;48(6):1108–15. Available from: https://doi.org/10.1016/j.ijthermalsci.2008.11.012
  • 18. Alawi OA, Sidik NAC. Influence of particle concentration and tem-perature on the thermophysical properties of CuO/R134a nanore-frigerant. International Communications in Heat and Mass Transfer [Internet]. 2014 Nov 1;58:79–84. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.038
  • 19. Mahbubul IM, Fadhilah SA, Saidur R, Leong KY, Afifi AM. Thermo-physical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. International Journal of Heat and Mass Transfer [Internet]. 2013 Jan 1;57(1):100–8. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.007
  • 20. Mahbubul IM, Saidur R, Afifi AM. Thermal Conductivity, Viscosity and Density of R141b Refrigerant based Nanofluid. Procedia Engi-neering [Internet]. 2013 Jan 1;56:310–5. Available from: https://doi.org/10.1016/j.proeng.2013.03.124
  • 21. Mahbubul IM, Saidur R, Afifi AM. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant. International Communications in Heat and Mass Transfer [Internet]. 2013 Apr 1;43:100–4. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2013.02.004
  • 22. Alawi OA, Sidik NAC. Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants. International Communications in Heat and Mass Transfer [Internet]. 2014 Nov 1;58:125–31. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2014.08.033
  • 23. Alawi OA, Sidik NAC. The effect of temperature and particles con-centration on the determination of thermo and physical properties of SWCNT-nanorefrigerant. International Communications in Heat and Mass Transfer [Internet]. 2015 Oct 1;67:8–13. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2015.06.014
  • 24. Al-Hajaj Z, Bayomy AM, Saghir MZ. A comparative study on best configuration for heat enhancement using nanofluid. International Journal of Thermofluids [Internet]. 2020 Nov 1;7–8:100041. Availa-ble from: https://doi.org/10.1016/j.ijft.2020.100041
  • 25. Plant, Saghir. Numerical and experimental investigation of high concentration aqueous alumina nanofluids in a two and three chan-nel heat exchanger. International Journal of Thermofluids. 2021 Feb;9(100055).
  • 26. Avsec J, Marčič M. The calculation of equilibrium and nonequilibri-um thermophysical properties [Internet]. 35th AIAA Thermophysics Conference. 2001. Available from: https://doi.org/10.2514/6.2001-2766
  • 27. Avsec J, Marčič M. The calculation of the thermophysical properties for pure refrigerants and their mixtures [Internet]. 33rd Thermophys-ics Conference. 1999. Available from: https://doi.org/10.2514/6.1999-3676
  • 28. Yılmaz F, Özdemir AF, Şahin AŞ, Selbaş R. Prediction of thermo-dynamic and thermophysical properties of carbon dioxide. Journal of Thermophysics and Heat Transfer [Internet]. 2014 Jul 1;28(3): 491–8. Available from: https://doi.org/10.2514/1.t4042
  • 29. Wang KJ, Ding GL, Jiang WT. Development of nanorefrigerant and its rudiment property. In 8th International Symposium on Fluid Con-trol, Measurement and Visualization. Chengdu. China: China Aero-dynamics Research Society 2005 Aug.
  • 30. Bi S, Guo K, Liu Z, Wu J. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid. Energy Conver-sion and Management [Internet]. 2011 Jan 1;52(1):733–7. Available from: https://doi.org/10.1016/j.enconman.2010.07.052
  • 31. Wang, Hao, Xie, Li. A refrigerating system using HFC134A and mineral lubricant appended with N-TiO2 (R) as working fluids. In: Heating, ventilating and air conditioning. ISHVAC 2003. Tsinghua University Press. 2003.
  • 32. Wang, Shiromoto, Mizogami. Experiment study on the effect of nanoscale particle on the condensation process. In: Proceeding of the 22nd International Congress of Refrigeration. Beijing. China. 2007.
  • 33. Bi S, Song L, Zhang L. Application of nanoparticles in domestic refrigerators. Applied Thermal Engineering [Internet]. 2008 Oct 1;28(14–15):1834–43. Available from: https://doi.org/10.1016/j.applthermaleng.2007.11.018
  • 34. Alawi OA, Salih JM, Mallah AR. Thermo-physical properties effec-tiveness on the coefficient of performance of Al2O3/R141b nano-refrigerant. International Communications in Heat and Mass Trans-fer [Internet]. 2019 Apr 1;103:54–61. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2019.02.011
  • 35. Yu W, Choi SJ. The role of interfacial layers in the enhanced ther-mal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research [Internet]. 2003 Apr 1;5(1/2):167–71. Available from: https://doi.org/10.1023/a:1024438603801
  • 36. Sitprasert C, Dechaumphai P, Juntasaro V. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. Journal of Nanoparticle Research [Internet]. 2008 Nov 4;11(6):1465–76. Available from: https://doi.org/10.1007/s11051-008-9535-4
  • 37. Leong KC, Yang C, Murshed SMS. A model for the thermal conduc-tivity of nanofluids – the effect of interfacial layer. Journal of Nano-particle Research [Internet]. 2006 Apr 1;8(2):245–54. Available from: https://doi.org/10.1007/s11051-005-9018-9
  • 38. Patil MS, Kim SC, Seo JH, Lee M. Review of the Thermo-Physical Properties and Performance Characteristics of a refrigeration sys-tem using Refrigerant-Based Nanofluids. Energies [Internet]. 2015 Dec 31;9(1):22. Available from: https://doi.org/10.3390/en9010022
  • 39. Zawawi NNM, Azmi WH, Redhwan A a. M, Sharif MZ, Sharma KV. Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system. International Journal of Re-frigeration [Internet]. 2017 Aug 1;80:1–10. Available from: https://doi.org/10.1016/j.ijrefrig.2017.04.024
  • 40. Yang L, Hu Y. Toward TIO2 Nanofluids—Part 2: Applications and Challenges. Nanoscale Research Letters [Internet]. 2017 Jul 6;12(1). Available from: https://doi.org/10.1186/s11671-017-2185-7
  • 41. Mohammed AHSMMMS Karam Hashim. Energy observation tech-nique for vapour absorption using nano fluid refrigeration [Internet]. 2020. Available from: http://sersc.org/journals/index.php/IJAST/article/view/22608
  • 42. Wang X, Amrane K, Johnson P. Low Global Warming Potential (GWP) Alternative Refrigerants Evaluation Program (Low-GWP AREP) [Internet]. Purdue e-Pubs. Available from: http://docs.lib.purdue.edu/iracc/1222
  • 43. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Experimental Thermal and Fluid Science [In-ternet]. 2010 Feb 1;34(2):210–6. Available from: https://doi.org/10.1016/j.expthermflusci.2009.10.022
  • 44. Akhavan-Behabadi MA, Sadoughi M, Darzi M, Fakoor-Pakdaman M. Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation. Experimental Thermal and Fluid Science [Internet]. 2015 Sep 1;66:46–52. Availa-ble from: https://doi.org/10.1016/j.expthermflusci.2015.02.027
  • 45. Wang CC. An overview for the heat transfer performance of HFO-1234yf. Renewable & Sustainable Energy Reviews [Internet]. 2013 Mar 1;19:444–53. Available from: https://doi.org/10.1016/j.rser.2012.11.049
  • 46. Maxwell JC. A treatise on electricity and magnetism. Journal of the Franklin Institute [Internet]. 1954 Dec 1;258(6):534. Available from: https://doi.org/10.1016/0016-0032(54)90053-8
  • 47. Hamilton R, Crosser OK. Thermal conductivity of heterogeneous Two-Component systems. Industrial & Engineering Chemistry Fun-damentals [Internet]. 1962 Aug 1;1(3):187–91. Available from: https://doi.org/10.1021/i160003a005
  • 48. Sharif MZ, Azmi WH, Redhwan A a. M, Mamat R. Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system. International Journal of Refrigeration [Internet]. 2016 Oct 1;70:93–102. Available from: https://doi.org/10.1016/j.ijrefrig.2016.06.025
  • 49. Stacy SC, Zhang X, Pantoya ML, Weeks BL. The effects of density on thermal conductivity and absorption coefficient for consolidated aluminum nanoparticles. International Journal of Heat and Mass Transfer [Internet]. 2014 Jun 1;73:595–9. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.050
  • 50. Jwo, Jeng, Chang, Teng. Experimental study on thermal conductivi-ty of lubricant containing nanoparticles. Reviews on Advanced Ma-terials Science. 2008;18:660–6.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-6adfc043-2453-4ec5-a2c4-dc16c11c0d30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.